giúp mình với ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Làm biếng tính tích có hướng nên biến đổi đại số thuần túy:
Gọi \(M\left(x;y;z\right)\) là điểm bất kì thuộc đường thẳng cần tìm
\(\Rightarrow MA=MB=MC\)
\(\Rightarrow\left\{{}\begin{matrix}\left|\overrightarrow{MA}\right|=\left|\overrightarrow{MB}\right|\\\left|\overrightarrow{MB}\right|=\left|\overrightarrow{MC}\right|\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2+y^2+\left(z+1\right)^2=\left(x-2\right)^2+\left(y-3\right)^2+\left(z+1\right)^2\\\left(x-2\right)^2+\left(y-3\right)^2+\left(z+1\right)^2=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y-6=0\\2x+y-z-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+3y-6=0\\5y+z-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=-3\left(y-1\right)\\5\left(y-1\right)=-\left(z-5\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-3}{3}=\dfrac{y-1}{-1}\\\dfrac{y-1}{-1}=\dfrac{z-5}{5}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x-3}{3}=\dfrac{y-1}{-1}=\dfrac{z-5}{5}\)

Nhìn đề bài và đáp án thì rõ ràng đề bài bị in sai
Cả 4 đáp án đều có dạng hàm dưới nguyên hàm là \(\dfrac{1}{sin^2\dfrac{x}{2}}\)
Trong khi đề bài lại là \(\dfrac{1}{sin\dfrac{x^2}{2}}\) (đúng thế này thì ko tính được nguyên hàm)
Kết luận: đề in ẩu, lỗi của người đánh máy

\(33\times77+66\times77+77\)
\(=77\times\left(33+66+1\right)\)
\(=77\times100\)
\(=7700\)

Sửa đề: \(\dfrac{a^2+b^2}{2}\ge ab\)
Ta có: \(\left(a-b\right)^2\ge0\) với mọi a, b
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge ab\)
Dấu "=" xảy ra khi a=b


3:
Số tiền phải trả trước khi giảm giá lần 2 là:
15390000:95%=16200000(đồng)
Số tiền vốn là:
16200000:90%=18000000(đồng)
S A B C D H O K P
Gọi O là giao của AC và BD
Xét \(\Delta ABC\) có H là trọng tâm => BH là trung tuyến của \(\Delta ABC\)
BH cắt AC tại O' => O' là trung điểm của AC
Mà O cũng là trung điểm của AC (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
=> O trùng O' => B; H; O; D thẳng hàng
Ta có \(AC=\sqrt{AB^2+BC^2}=\sqrt{36a^2+64a^2}=10a\)
Mà \(BD=AC=10a\Rightarrow BO=DO=\frac{BD}{2}=5a\)
Ta có \(HO=\frac{BO}{3}=\frac{5a}{3}\Rightarrow HD=HO+DO=\frac{5a}{3}+5a=\frac{20a}{3}\)
Ta có \(SH\perp\left(ABCD\right)\) mà \(HD\in\left(ABCD\right)\Rightarrow SH\perp HD\)
Xét tg vuông SHD có
\(\tan\widehat{SDH}=\tan30^o=\frac{\sqrt{3}}{3}=\frac{SH}{HD}\Rightarrow SH=\frac{HD\sqrt{3}}{3}=\frac{20a\sqrt{3}}{3.3}=\frac{20a\sqrt{3}}{9}\)
Trong mp(ABCD) từ A và C hạ đường vuông góc xuống BD cắt BD lần lượt tại P và K. Xét tg vuông APB và tg vuông CKD có
AD=BC (cạnh đối HCN); \(\widehat{ABD}=\widehat{CDB}\) (góc so le trong) \(\Rightarrow\Delta ABP=\Delta CDK\) (cạnh huyền và góc nhọn tương ứng bằng nhau) => AP=CK
Xét tg vuông ABD có
\(AB^2=BP.BD\Rightarrow BP=\frac{AB^2}{BD}=\frac{36a^2}{10a}=\frac{18a}{5}\)
Xét tg vuông ABP có
\(AP=\sqrt{AB^2-BP^2}=\sqrt{36a^2-\frac{324a^2}{25}}=\frac{24a}{5}\)
\(S_{AHO}=\frac{HO.AP}{2}=\frac{5a.24a}{3.5.2}=4a^2\)
\(S_{CHO}=\frac{HO.CK}{2}=4a^2\)
\(\Rightarrow S_{AHCD}=S_{ACD}+S_{AHO}+S_{CHO}=\frac{6a.8a}{2}+8a^2=32a^2\)
\(\Rightarrow V_{S.AHCD}=\frac{1}{3}.S_{AHCD}.SH=\frac{1}{3}.32a^2.\frac{20a\sqrt{3}}{9}=\frac{640a^3\sqrt{3}}{27}\)