K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

Đáp án là B

Ta có:

C = lim x → 1 x − 1 x + 1 − m x − 1 x − 1 x + 1 = lim x → 1 x + 1 − m x + 1 = 2 − m 2

mà  C = 2 ⇒ m = − 2.

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

AH
Akai Haruma
Giáo viên
25 tháng 1 2020

Lời giải:
a)

\(\lim\limits_{x\to-1}\frac{\sqrt[3]{x}+1}{2x^2+5x+3}=\lim\limits_{x\to-1}\frac{x+1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(x+1\right)\left(2x+3\right)}\)

\(\lim\limits_{x\to-1}\frac{1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(2x+3\right)}=\frac{1}{\left(\sqrt[3]{\left(-1\right)^2}-\sqrt[3]{-1}+1\right)\left(2.-1+3\right)}=\frac{1}{3}\)

b)

\(\lim\limits_{x\to1}\frac{\sqrt[3]{x^2}-2\sqrt[3]{x}+1}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(\sqrt[3]{x}-1\right)^2}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(x-1\right)^2}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2\left(x-1\right)^2}\)

\(=\lim\limits_{x\to1}\frac{1}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2}=\frac{1}{\left(1+1+1\right)^2}=\frac{1}{9}\)

c)

\(\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{x^3+x^2-2}=\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{(x-1)(x^2+2x+2)}=\lim_{x\to 1}\frac{x-1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x-1)(x^2+2x+2)}\)

\(=\lim_{x\to 1}\frac{1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x^2+2x+2)}=\frac{1}{(1+1)(1+1)(1+2.1+2)}=\frac{1}{20}\)

d)

\(\lim_{x\to -2}\frac{\sqrt[3]{2x+12}+x}{x^2+2x}=\lim_{x\to -2}\frac{2x+12+x^3}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}\)

\(=\lim_{x\to -2}\frac{(x+2)(x^2-2x+6)}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}=\lim_{x\to -2}\frac{x^2-2x+6}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x}\)

\(=\frac{-7}{12}\)

AH
Akai Haruma
Giáo viên
7 tháng 1 2020

Lời giải:
a)

\(\lim\limits_{x\to-1}\frac{\sqrt[3]{x}+1}{2x^2+5x+3}=\lim\limits_{x\to-1}\frac{x+1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(x+1\right)\left(2x+3\right)}\)

\(\lim\limits_{x\to-1}\frac{1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(2x+3\right)}=\frac{1}{\left(\sqrt[3]{\left(-1\right)^2}-\sqrt[3]{-1}+1\right)\left(2.-1+3\right)}=\frac{1}{3}\)

b)

\(\lim\limits_{x\to1}\frac{\sqrt[3]{x^2}-2\sqrt[3]{x}+1}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(\sqrt[3]{x}-1\right)^2}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(x-1\right)^2}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2\left(x-1\right)^2}\)

\(=\lim\limits_{x\to1}\frac{1}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2}=\frac{1}{\left(1+1+1\right)^2}=\frac{1}{9}\)

c)

\(\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{x^3+x^2-2}=\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{(x-1)(x^2+2x+2)}=\lim_{x\to 1}\frac{x-1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x-1)(x^2+2x+2)}\)

\(=\lim_{x\to 1}\frac{1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x^2+2x+2)}=\frac{1}{(1+1)(1+1)(1+2.1+2)}=\frac{1}{20}\)

d)

\(\lim_{x\to -2}\frac{\sqrt[3]{2x+12}+x}{x^2+2x}=\lim_{x\to -2}\frac{2x+12+x^3}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}\)

\(=\lim_{x\to -2}\frac{(x+2)(x^2-2x+6)}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}=\lim_{x\to -2}\frac{x^2-2x+6}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x}\)

\(=\frac{-7}{12}\)

27 tháng 7 2021

1. a) M = A + B = x3 - 2x2 + 1 + 2x2 - 1 = x3

b) Thay x = 1/2 vào M => M = (1/2)3 = 1/8

c) Khi M = 0

=> x3 = 0

=> x = 0

2. Sửa đề : B = -x3 + x2

a) M = A + B = x3 - x2 - 2x  + 1 - x3 + x2 = - 2x + 1

b) Thay x = 1 vào M => M = - 2.1 + 1 = -1

c) Để M = 0

=> - 2x + 1 = 0

=> 2x = 1

=> x = 0,5

Vậy x = 0,5 thì M = 0

sorry bn nha mk viết thiếu đề bài 2

B= -x^3 +x^2

NV
5 tháng 7 2020

\(\Delta'=\left(m-2\right)^2-m-1=m^2-5m+3\)

Đề bài sai hoặc bạn ghi pt sai (ví dụ với \(m=1\Rightarrow\Delta'=-1< 0\) pt vô nghiệm bình thường)

21 tháng 12 2023

a) lim⁡�→12�+3+�−5�−�2=lim⁡�→1(2�+3+(�−5))(2�+3−(�−5))(�−�2)(2�+3−(�−5))x1limxx22x+3+x5=x1lim(xx2)(2x+3(x5))(2x+3+(x5))(2x+3(x5))

=lim⁡�→1−�2+14�−13−�(�−1)(2�+3−(�−5))=lim⁡�→1−(�−1)(�−13)−�(�−1)(2�+3−(�−5))=x1limx(x1)(2x+3(x5))x2+14x13=x1limx(x1)(2x+3(x5))(x1)(x13)

=lim⁡�→1−(�−13)−�(2�+3−(�−5))=−32=x1limx(2x+3(x5))(x13)=23

b) lim⁡�→1�2+��+��2−1=−12x1limx21x2+ax+b=21.

Suy ra �=1x=1 là nghiệm của tử số ⇒1+�+�=0⇔�=−�−1.1+a+b=0b=a1.

Ta có lim⁡�→1�2+��+��2−1=lim⁡�→1�2+��−�−1�2−1=lim⁡�→1(�−1)(�+�+1)(�−1)(�+1)=−12.x1limx21x2+ax+b=x1limx21x2+axa1=x1lim(x1)(x+1)(x1)(x+a+1)=21.

Do đó lim⁡�→1�2+��+��2−1=−12x1limx21x2+ax+b=21

⇔2+�2=−12⇔�=−3,�=2.22+a=21a=3,b=2.

21 tháng 12 2023

loading... loading... 

NV
30 tháng 8 2020

2.

\(y'=3x^2+6\left(m-1\right)x+6m-12\)

Để hàm số có 2 cực trị

\(\Leftrightarrow\Delta'=9\left(m-1\right)^2-3\left(6m-12\right)>0\)

\(\Leftrightarrow9m^2-36m+45>0\) (luôn đúng)

Tiến hành chia y cho y' và lấy phần dư ta được pt đường thẳng AB có dạng:

\(y=\left(2m-6\right)x-2m^2+6m-5\)

AB song song d khi và chỉ khi:

\(\left\{{}\begin{matrix}2m-6=-4\\-2m^2+6m-5\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\-2m^2+6m-6\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)

NV
30 tháng 8 2020

1.

Đường thẳng d: \(9x-2y+5=0\Leftrightarrow y=\frac{9}{2}x+\frac{5}{2}\)

\(y'=3x^2+4\left(m-1\right)x+m^2-4m+1\)

Để hàm số có 2 cực trị

\(\Leftrightarrow\Delta'=4\left(m-1\right)^2-3m^2+12m-3>0\)

\(\Leftrightarrow m^2+4m+1>0\)

Khi đó, tiến hành chia \(y\) cho \(y'\) và lấy phần dư ta được pt AB có dạng:

\(y=\left(\frac{2}{3}m^2-\frac{32}{9}m+\frac{14}{9}\right)x-2m^2-2-\frac{2}{9}\left(m-1\right)\left(m^2-4m+1\right)\)

Để AB vuông góc d \(\Leftrightarrow\) tích 2 hệ số góc bằng -1

\(\Leftrightarrow\frac{9}{2}\left(\frac{2}{3}m^2-\frac{32}{9}m+\frac{14}{9}\right)=-1\)

\(\Leftrightarrow3m^2-16m+8=0\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{8+2\sqrt{10}}{3}\\m=\frac{8-2\sqrt{10}}{3}\end{matrix}\right.\)

Bạn nên tính toán lại cho chắc