cho tam giác ABC và ABD có AB=BC =3cm; AD=BD=2cm (C và D nắm khác phía với đối với AB). Chứng minh rắnggóc CAD= gócCBD
giúp mình với tối nay mình phải gửi cho cô rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có
\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))
Do đó: ΔABD\(\sim\)ΔEBC(g-g)
Xét ΔCAD và ΔCBD, ta có:
AC = BC (= 3 cm)
AD = BD (= 2 cm)
CD cạnh chung
Suy ra: ΔCAD= ΔCBD(c.c.c)
Vậy ∠(CAD) =∠(CBD) ̂(hai góc tương ứng)
xét 2 tam giác ACD và BCD có AD=BD=2cm, AC=BC=3cm, CD chung
=> tg ACD= tg BCD (c.c.c) =>góc CAD= góc CBD
a,Xét tam giácCAD và tam giác CBD có:
CD:cạnh chumg
CA=CB
AD=BD
----->Tam giác CAD=tam giác CBD(c.c.c)
Vậy....
b,Có tam giác CAD=tam giác CBD(cmt)
-->Góc CAD=góc CBD(cặp góc tương ứng )
Vậy...
tìm một số biết rằng số đó nhân với 3 thì được số lớn nhất có một chữ số.
a: AB<AC<BC
=>góc C<gócB<góc A
b: Xét ΔABD và ΔEBD có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
c,d: ΔBAD=ΔBED
=>góc ADB=góc EDB và góc BAD=góc BED=90 độ
=>DB là phân giác của góc ADE và DE vuông góc BC
a, Có AB ^2 = 5^2=25
Có BC^2 +AC ^2= 4^2 +3^2=16+9=25
\(\Rightarrow\)AB^2 = AC^ 2+ BC^2 (=25)
\(\Rightarrow\)Tam giác ABC là tam giác vuông tại C ( Định lý pytago đảo)
\(\Rightarrow\)Góc ACB = 90 độ
b, Có góc BCD + góc ACB = 180 độ( 2 góc kề bù)
góc BCD + 90 độ = 180 độ
góc BCD = 90 độ
Xét tam giác ABC và BDC , có:
AC=CD ( vì cùng = 3cm)
góc ACB = góc BCD ( vì cùng = 90 độ)
BC là cạnh chung
\(\Rightarrow\)Tam giác ABC= Tam giác BCD (c.g.c)
\(\Rightarrow\) AB = BD (2 cạnh tương ứng)
Xét tam giác ABD, có:
AB = BD (chứng minh trên)
\(\Rightarrow\)Tam giác ABD cân tại B
Xét ΔCAD và ΔCBD, ta có:
AC = BC (= 3 cm)
AD = BD (= 2 cm)
CD cạnh chung
Suy ra: ΔCAD= ΔCBD(c.c.c)
Vậy ∠(CAD) =∠(CBD) ̂(hai góc tương ứng)