giải hệ pt \(\frac{1}{\sqrt{x}}+\frac{y}{x}=\frac{2\sqrt{x}}{y}+2\)
\(16x^4-24x^2+8\sqrt{3-2y}-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ x ; y > 0
(1) \(\Rightarrow\left(y-x\right)\left(\frac{1}{\sqrt{x}y}+x+2xy\right)=0\)
\(\Rightarrow x=y\)
\(\Rightarrow...\)
#Kaito#
1)
a) \(\left\{{}\begin{matrix}2x-y=5\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2x-y+x+y=5+4\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x=9\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy (x;y)=(3;1)
b) \(16x^5-8x^3+x=0\Leftrightarrow x\left(16x^4-8x^2+1\right)=0\Leftrightarrow x\left[\left(4x^2\right)^2-2.4x^2.1+1^2\right]=0\Leftrightarrow x\left(4x^2-1\right)^2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\4x^2-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=\frac{\pm1}{2}\end{matrix}\right.\)
Vậy S={\(-\frac{1}{2};0;\frac{1}{2}\)}
2)
A=\(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{4}+\frac{1}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{5}+1}{5-1}=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{5}+1}{4}=\frac{\sqrt{5}-1+\sqrt{5}+1}{4}=\frac{2\sqrt{5}}{4}=\frac{\sqrt{5}}{2}\)
B=\(\frac{4}{3+\sqrt{5}}-\frac{8}{1+\sqrt{5}}+\frac{15}{\sqrt{5}}=\frac{4\left(3-\sqrt{5}\right)}{9-5}-\frac{8\left(1-\sqrt{5}\right)}{1-5}+3\sqrt{5}=\frac{4\left(3-\sqrt{5}\right)}{4}-\frac{8\left(\sqrt{5}-1\right)}{4}+3\sqrt{5}=3-\sqrt{5}-2\sqrt{5}+2+3\sqrt{5}=5\)
Bài 1:
Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)
Khi đó hệ PT trở thành:
\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)
Có: \(a^4+b^4=81\)
\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)
\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)
\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)
\(\Leftrightarrow 2a^2b^2-36ab=0\)
\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)
Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$
$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$
Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$
Dễ thấy pt này vô nghiệm nên loại
Vậy......
Bài 2:
ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)
HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$
$\Rightarrow (a,b)=(2,1); (1,2)$
Nếu $(a,b)=(2,1)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)
$y=1\rightarrow x=3$
$y=-1\rightarrow y=5$
Nếu $(a,b)=(1,2)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)
\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)
Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$
Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$
Vậy...........
to moi hoc lop 6 ...tich nha moi nguoi hiha
to moi hoc lop 6 ..tich nha