Giải phương trình sau
a, \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\) = \(\dfrac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\notin\left\{3;-5\right\}\)
\(\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)
=>\(\dfrac{5\left(x+5\right)-3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
=>\(\dfrac{5x+25-3x+9}{15}=\dfrac{5x+25-3x+9}{\left(x-3\right)\left(x+5\right)}\)
=>(x-3)(x+5)=15
=>\(x^2+2x-15-15=0\)
=>\(x^2+2x-30=0\)
=>\(\left(x+1\right)^2=31\)
=>\(\left[{}\begin{matrix}x+1=\sqrt{31}\\x+1=-\sqrt{31}\end{matrix}\right.\Leftrightarrow x=-1\pm\sqrt{31}\left(nhận\right)\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2+x+1}=3-x\)
=>\(\left\{{}\begin{matrix}x^2+x+1=\left(3-x\right)^2\\x< =3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =3\\x^2-6x+9=x^2+x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =3\\-7x=-8\end{matrix}\right.\Leftrightarrow x=\dfrac{8}{7}\left(nhận\right)\)
c:
ĐKXĐ: \(x\in R\)
\(x^2-x+\sqrt{x^2-x+24}=18\)
=>\(x^2-x+24+\sqrt{x^2-x+24}=42\)
=>\(\left(\sqrt{x^2-x+24}\right)^2+\left(\sqrt{x^2-x+24}\right)-42=0\)
=>\(\left(\sqrt{x^2-x+24}+7\right)\left(\sqrt{x^2-x+24}-6\right)=0\)
=>\(\sqrt{x^2-x+24}-6=0\)
=>\(x^2-x+24=36\)
=>\(x^2-x-12=0\)
=>(x-4)(x+3)=0
=>\(\left[{}\begin{matrix}x-4=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)
Bài 1:
a. ĐKXĐ: $x\geq \frac{2}{5}$
PT $\Leftrightarrow 5x-2=7^2=49$
$\Leftrightarrow 5x=51$
$\Leftrightarrow x=\frac{51}{5}=10,2$
b. ĐKXĐ: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{25(x-3)}=24$
$\Leftrightarrow 3\sqrt{x-3}+5\sqrt{x-3}=24$
$\Leftrightarrow 8\sqrt{x-3}=24$
$\Leftrightarrow \sqrt{x-3}=3$
$\Leftrightarrow x-3=9$
$\Leftrightarrow x=12$ (tm)
Bài 1:
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow x^2-5x+6-2(\sqrt{x-2}-1)=0$
$\Leftrightarrow (x-2)(x-3)-2.\frac{x-3}{\sqrt{x-2}+1}=0$
$\Leftrightarrow (x-3)[(x-2)-\frac{2}{\sqrt{x-2}+1}]=0$
$x-3=0$ hoặc $x-2=\frac{2}{\sqrt{x-2}+1}$
Nếu $x-3=0$
$\Leftrightarrow x=3$ (tm)
Nếu $x-2=\frac{2}{\sqrt{x-2}+1}$
$\Leftrightarrow a^2=\frac{2}{a+1}$ (đặt $\sqrt{x-2}=a$)
$\Leftrightarrow a^3+a^2-2=0$
$\Leftrightarrow a^2(a-1)+2a(a-1)+2(a-1)=0$
$\Leftrightarrow (a-1)(a^2+2a+2)=0$
Hiển nhiên $a^2+2a+2=(a+1)^2+1>0$ với mọi $a$ nên $a-1=0$
$\Leftrightarrow a=1\Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$ (tm)
Vậy pt có nghiệm duy nhất $x=3$.
ĐKXĐ: \(\left\{{}\begin{matrix}-1\le x\le3\\x\ne1\end{matrix}\right.\)
\(\dfrac{\sqrt{x+1}\left(\sqrt{x+1}+\sqrt{3-x}\right)}{2\left(x-1\right)}>x-\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{x+1+\sqrt{-x^2+2x+3}}{x-1}>2x-1\)
- TH1: Với \(x>1\) BPT tương đương:
\(x+1+\sqrt{-x^2+2x+3}>\left(2x-1\right)\left(x-1\right)\)
\(\Leftrightarrow\sqrt{-x^2+2x+3}>2x^2-4x\)
Đặt \(\sqrt{-x^2+2x+3}=t\ge0\Rightarrow2x^2-4x=-2t^2+6\)
BPt trở thành: \(t>-2t^2+6\Leftrightarrow2t^2+t-6>0\)
\(\Rightarrow t>\dfrac{3}{2}\Rightarrow-x^2+2x+3>\dfrac{9}{4}\Rightarrow1< x< \dfrac{2+\sqrt{7}}{2}\)
TH2: với \(x< 1\) BPT tương đương:
\(x+1+\sqrt{-x^2+2x+3}< \left(2x-1\right)\left(x-1\right)\)
\(\Leftrightarrow\sqrt{-x^2+2x+3}< 2x^2-4x\)
Tương tự như trên, đặt \(t=\sqrt{-x^2+2x+3}\ge0\) ta được \(0\le t< \dfrac{3}{2}\)
\(\Rightarrow-x^2+2x+3< \dfrac{9}{4}\) \(\Rightarrow-1\le x< \dfrac{2-\sqrt{7}}{2}\)
Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}-1\le x< \dfrac{2-\sqrt{7}}{2}\\1< x< \dfrac{2+\sqrt{7}}{2}\end{matrix}\right.\)
1) \(\dfrac{x+2\sqrt[]{x}}{\sqrt[]{x}-1}=8\left(1\right)\)
Điều kiện \(\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}-1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x+2\sqrt[]{x}=8\left(\sqrt[]{x}-1\right)\)
\(\Leftrightarrow x-6\sqrt[]{x}+8=0\left(2\right)\)
Đặt \(t^2=x\Leftrightarrow t=\sqrt[]{x}\)
\(\left(2\right)\Leftrightarrow t^2-6t+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt[]{x}=2\\\sqrt[]{x}=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=16\end{matrix}\right.\) (thỏa điều kiện)
2) \(\sqrt[]{\dfrac{2x-3}{x-1}}=2\left(1\right)\)
Điều kiện \(\dfrac{2x-3}{x-1}\ge0\Leftrightarrow\left[{}\begin{matrix}x< 1\\x\ge\dfrac{3}{2}\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
\(\Leftrightarrow2x-3=4\left(x-1\right)\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\) (thỏa điều kiện)
ĐKXĐ \(x\ge1\)
\(P=\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}+\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{2\sqrt{x}+2}{x-1}\)
\(P=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-2\sqrt{x}-2}{x-1}\)
\(P=\dfrac{2x-2\sqrt{x}}{x-1}\)
\(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
Giải phương trình ???
\(ĐK:x\ge0\\ PT\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\\ \Leftrightarrow\sqrt{x}=5\\ \Leftrightarrow x=25\left(tm\right)\)