giải phương trình \(\sqrt{x-29}+2\sqrt{y-6}+3\sqrt{z-2011}+1016=\frac{x+y+z}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ....
\(\Leftrightarrow2\sqrt{x-29}+4\sqrt{y-6}+6\sqrt{z-2011}+2032=x+y+z\)
\(\Leftrightarrow x-29-2\sqrt{x-29}+1+y-6-4\sqrt{y-6}+4+z-2011-6\sqrt{z-2011}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-29}-1\right)^2+\left(\sqrt{y-6}-2\right)^2+\left(\sqrt{z-2011}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-29}-1=0\\\sqrt{y-6}-2=0\\\sqrt{z-2011}-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=10\\z=2020\end{matrix}\right.\)
\(\sqrt{x-29}+2\sqrt{y-6}+3\sqrt{z-2011}+1016=\dfrac{1}{2}\left(x+y+z\right)\)\(\Leftrightarrow2\sqrt{x-29}+4\sqrt{y-6}+6\sqrt{z-2011}+2032=x+y+z\)\(\Leftrightarrow-2\sqrt{x-29}-4\sqrt{y-6}-6\sqrt{z-2011}-2032=-x-y-z\)\(\Leftrightarrow(x-29-2\sqrt{x-29}+1)+(y-6-2\cdot2\sqrt{y-6}+2^2)+(z-2011-2\cdot3\sqrt{z-2011}+3^2)=0\)\(\Leftrightarrow\left(\sqrt{x-29}-1\right)^2+\left(\sqrt{y-6}-2\right)^2+\left(\sqrt{z-2011}-3\right)^2=0\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-29}-1=0\\\sqrt{y-6}-2=0\\\sqrt{z-2011}-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-29}=1\\\sqrt{y-6}=2\\\sqrt{z-2011}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-29=1\\y-6=4\\z-2011=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=30\\y=10\\z=2020\end{matrix}\right.\)
Vậy : ......................
Thưa bn mk đã làm ra nhưng không biết có đúng không. Xem nhá:
Ta có:
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2001}-1}{y-2001}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\Leftrightarrow"\frac{1}{\sqrt{x-2009}}-\frac{1}{2}"^2+\)
\("\frac{1}{\sqrt{y-2010}}-\frac{1}{2}"^2-"\frac{1}{\sqrt{z-2011}}-\frac{1}{2}"^2=0\)
\(\Rightarrow x=2013;y=2014;z=2015\)
P/s: Bn thay Ngoặc Kép thành Ngoặc Đơn nhé
a) ĐK: \(x>2009;y>2010;z>2011\)
\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)
Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)
\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)
(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)
Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)
Vậy phương trình có một nghiệm duy nhất là 3
\(ĐKXĐ:x\ne2009;y\ne2010;z\ne2011;x,y,z\in R\)
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{x-2009}-\frac{\sqrt{x-2009}}{x-2009}+\frac{1}{y-2010}-\frac{\sqrt{y-2011}}{y-2011}+\frac{1}{z-2011}-\frac{\sqrt{z-2011}}{z-2011}=\frac{-3}{4}\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}^2}-\frac{1}{\sqrt{x-2009}}+\frac{1}{4}\right)+\left(\frac{1}{\sqrt{y-2010}^2}-\frac{1}{\sqrt{y-2010}}+\frac{1}{4}\right)+\left(\frac{1}{\sqrt{z-2011}^2}+\frac{1}{\sqrt{z-2011}}+\frac{1}{4}\right)=0\)\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^{^2}+\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\)
- \(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}=0\)
- \(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}=0\)
- \(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{1}{\sqrt{x-2009}}=\frac{1}{2};\frac{1}{\sqrt{y-2010}}=\frac{1}{2};\frac{1}{\sqrt{z-2011}}=\frac{1}{2}\)
\(\Leftrightarrow x=2013;y=2014;z=2015\inĐKXĐ\)
VẬY \(x=2013;y=2014;z=2015\)
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
tham khảo Câu hỏi của Đỗ Thu Hà - Toán lớp 9 - Học toán với OnlineMath
\(x+y+z=2\sqrt{x-29}+4\sqrt{y-6}+6\sqrt{z-2011}+2032\)
<=>\(\left(x-29\right)-2\sqrt{x-29\cdot}+1+\left(y-6\right)-4\sqrt{y-6}+4+\left(z-2011\right)-6\sqrt{z-2011}+9=0\)
<=>\(\left(\sqrt{x-29}-1\right)^2+\left(\sqrt{y-6}-2\right)^2+\left(\sqrt{z-2011}-3\right)^2=0\)
cho 3 cái =0 là ra
nhân 2 lên rồi rút về hằng đẳng thức là xong bạn ak cần mk giải ra ko