K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2021

Answer:

\(A=\sqrt{x}+\sqrt{x+9}\left(x\ge0\right)\)

Với \(x\ge0\) thì: \(\hept{\begin{cases}x\ge0\\x+9\ge9\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{x}\ge0\\\sqrt{x+9}\ge\sqrt{9}=3\end{cases}}\)

\(\Rightarrow\sqrt{x}+\sqrt{x+9}\ge0+3=3\forall x\ge0\)

Dấu " = " xảy ra khi: \(\hept{\begin{cases}\sqrt{x}=0\\\sqrt{x+9}=3\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x+9=9\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=0\end{cases}}\)

Vậy giá trị nhỏ nhất của biểu thức A = 3 khi x = 0

5 tháng 9 2020

\(\sqrt{35-a\frac{23}{b}}\)

5 tháng 9 2020

Đặt \(\sqrt{x}=a\Rightarrow A=\frac{a^2+9}{a+4}\Rightarrow A\cdot a+4A=a^2+9\Rightarrow a^2-A\cdot a+\left(9-4A\right)=0\)

Ta có:\(\Delta_a=A^2-4\left(9-4A\right)=A^2+16A-36\ge0\Leftrightarrow\left(A-2\right)\left(A+13\right)\ge0\)

hình như có gì đó sai sai bạn xem lại lời giải mình thử nha

2 tháng 2 2016

câu a) rút x theo y thế vào A rồi áp dụng HĐT

b)rút xy thế vào B 

c)HĐT

d)rút x theo y thé vào C

rồi dùng BĐT cô-si

e)BĐT chưa dấu giá trị tuyệt đối

 

14 tháng 7 2018

a) \(M=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1\)\(-\frac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\frac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}\)\(+\frac{\sqrt{x}-2x-\sqrt{x}}{\sqrt{x}}\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}\)

\(=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)

18 tháng 9 2017

khó vậy

18 tháng 9 2017

bai nay mk thay rat kho vi mk ko thay co 1 quy luat nao ca

20 tháng 12 2019

Mình nhầm tìm GTLN

3 tháng 10 2021

À thui mình nghĩ ra roài

12 tháng 10 2018

các bạn giúp đi,mk kick cho

12 tháng 10 2018

giúp mk với

12 tháng 10 2018

giúp mk với