Biết rằng 4 a = x v à 16 b = y . Khi đó xy bằng
A. 64 a b
B. 4 a + 2 b
C. 4 2 a b
D. 16 a + 2 b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Gọi bốn số nguyên dương liên tiếp là x,x+1,x+2,x+3
Theo đề, ta có: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=120\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=120\)
\(\Leftrightarrow\left(x^2+3x\right)^2+2\left(x^2+3x\right)-120=0\)
\(\Leftrightarrow\left(x^2+3x\right)^2+12\left(x^2+3x\right)-10\left(x^2+3x\right)-120=0\)
\(\Leftrightarrow\left(x^2+3x+12\right)\left(x^2+3x-10\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
mà x là số nguyên dương
nên x=2
Vậy: Bốn số cần tìm là 2;3;4;5
a) Áp dụng tc dãy tỉ số = nhau ta có;
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=2\)
Khi đó: \(\hept{\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{5}=2\Rightarrow y=10\end{cases}}\)
Vậy \(\hept{\begin{cases}x=6\\y=10\end{cases}}\).
b) Áp dụng tc dãy tỉ số = nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x-y+z}{2-3+4}=\frac{3}{3}=1\)
Khi đó: \(\hept{\begin{cases}\frac{x}{2}=1\Rightarrow x=2\\\frac{y}{3}=1\Rightarrow y=3\\\frac{z}{4}=1\Rightarrow z=4\end{cases}}\)
Vậy ....
2. Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\left(1\right)}\)
Thay (1) vào đề: \(VT=\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
\(VP=\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow VT=VP\)
\(\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\rightarrowĐpcm.\)
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\left(-3\right).2=-6\\y=\left(-3\right).3=-9\end{matrix}\right.\)
b) \(3x=7y\Rightarrow\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{-16}{4}=-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\left(-4\right).7=-28\\y=\left(-4\right).3=-12\end{matrix}\right.\)
c) Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\Rightarrow x=3k;y=4k\)
\(\Leftrightarrow xy=3k.4k=12k^2=12\)
\(\Rightarrow k=\left\{-1;1\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=3;y_1=4\\x_2=-3;y_2=-4\end{matrix}\right.\)
a, \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
<=> \(\left\{{}\begin{matrix}x=\left(-3\right).2=-6\\y=\left(-3\right).3=-9\end{matrix}\right.\)
@Phạm Hải Minh
Bài 1:
\(a^2+b^2+c^2=16\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=16\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=16\Rightarrow ab+bc+ac=-8\)\(\Rightarrow\left(ab+bc+ac\right)^2=64\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=64\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=64\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=64\)
Ta có:
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=16^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=256-2.64=128\)
Câu 1:
Giải:
Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow\dfrac{a}{16}=\dfrac{b}{24}\\\dfrac{b}{4}=\dfrac{c}{5}\Rightarrow\dfrac{b}{24}=\dfrac{c}{30}\\\dfrac{c}{6}=\dfrac{d}{7}\Rightarrow\dfrac{c}{30}=\dfrac{d}{35}\end{matrix}\right.\Rightarrow\dfrac{a}{16}=\dfrac{b}{24}=\dfrac{c}{30}=\dfrac{d}{35}\)
\(\Rightarrow a:b:c=16:24:30\)
Vậy \(a:b:c=16:24:30\)
Câu 1:
|a| là số dương ⇒ b là số dương.
Mà a trái dấu b ⇒ a là số âm.
Câu 3:
a)1020=10010>9010.
b)0,320=0,0910< 0,110.
c)\(\left(-5\right)^{30}=\left(-125\right)^{10}>\left(-243\right)^{10}=\left(-3\right)^{50}\)
d)\(64^8=\left(2^6\right)^8=2^{48}\)
\(16^{12}=\left(2^4\right)^{12}\)\(=2^{48}\)
⇒\(64^8=16^{12}\)
\(x-y=1\Rightarrow x^2-2xy+y^2=1\Rightarrow x^2+xy+y^2=19\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1.19=19\)
\(2,a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0ma:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)=4a^2b^2+4c^2a^2+4b^2c^2\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2\left(dpcm\right)\)