Cho hai số thực a,b ∈ 0 ; π 2 thỏa mãn ∫ a b 1 cos 2 x d x = 10 Giá trị của a-tanb bằng
A. 10
B. - 1 10
C. -10
D. 1 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mệnh đề có dạng \(P \Rightarrow Q\) với P: “\(2a - 1 > 0\)” và Q: “\(a > 0\)”
Ta thấy khi P đúng (tức là \(a > \frac{1}{2}\)) thì Q cũng đúng. Do đó, \(P \Rightarrow Q\) đúng.
b) Mệnh đề có dạng \(P \Leftrightarrow Q\) với P: “\(a - 2 > b\)” và Q: “\(a > b + 2\)”
Khi P đúng thì Q cũng đúng, do đó, \(P \Rightarrow Q\) đúng.
Khi Q đúng thì P cũng đúng, do đó, \(Q \Rightarrow P\) đúng.
Vậy mệnh đề \(P \Leftrightarrow Q\) đúng.
Chọn D.
Phương pháp
Xét tính đúng sai của từng đáp án, chú ý các tính chất của logarit.
Cách giải:
Dễ thấy các đáp án A, B, C đều đúng theo tính chất logarit. Đáp án D sai vì chưa biết b > 0 hay b < 0 nên
không phá được dấu giá trị tuyệt đối trong đáp án D.
\(a< \sqrt{ab}\)
\(\Leftrightarrow a^2< ab\)
\(\Leftrightarrow a^2-ab< 0\)
\(\Leftrightarrow a\left(a-b\right)< 0\) (đúng) (1)
\(\sqrt{ab}< \dfrac{a+b}{2}\) (áp dụng BĐT AM-GM). (2)
\(\dfrac{a+b}{2}< b\)
\(\Leftrightarrow\dfrac{a}{2}-\dfrac{b}{2}< 0\)
\(\Leftrightarrow\dfrac{a-b}{2}< 0\) (đúng) (3)
-Từ (1), (2), (3) ta suy ra đpcm.
Có
Chọn đáp án C.