K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

Đáp án là D.

Ta có:

y = sin 4 x + cos 2 x + 2 y = sin 4 x − sin 2 x + 3

Đăt  t = sin 2 x , t ∈ 0 ; 1

f ( t ) = t 4 − t 2 + 3 ⇒ f ' ( t ) = 4 t 3 − 2 t ⇒ f ' ( t ) = 0 ⇔ t = 0 ∈ [ 0 ; 1 ] t = 2 2 ∈ [ 0 ; 1 ] t = − 2 2 ∉ [ 0 ; 1 ] ⇒ f ( 0 ) = 3 ; f ( 1 ) = 3 ; f 2 2 = 11 4

Vậy giá trị nhỏ nhất của hàm số đã cho là: 11 4

7 tháng 12 2019

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                    5/3                          +\(\infty\)
y+\(\infty\)                    13/3                       -\(\infty\)

loading...

b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3

Giá trị nhỏ nhất là y=13/3 khi x=5/3

20 tháng 2 2018

a)-19

b)22

Ta có:

Khi \(x\in\left[-3;0\right]\) thì \(f\left(x\right)\in\left[-4;5\right]\) (dùng BBT)

Lại có:

\(y=f\left(f\left(x\right)\right)=f^2\left(x\right)+6f\left(x\right)+5\) 

Khi \(f\left(x\right)\in\left[-4;5\right]\) thì \(f\left(f\left(x\right)\right)\in\left[-4;60\right]\) (dùng BBT)

Do đó, \(m=-4\Leftrightarrow f\left(x\right)=-3\Leftrightarrow x=-2\)

và \(M=60\Leftrightarrow f\left(x\right)=5\Leftrightarrow x=0\)

\(\Rightarrow S=m+M=-4+60=56\)

28 tháng 5 2017

Đáp án D

Vậy min S=-1, khi a=-2, b=1

27 tháng 8 2018

Đáp án C

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$