K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

14 tháng 1 2020

f(x) = x3 +3/x = x3 + 1/x +1/x +1/x 

cô si 4 số làm mất x là xong

2 tháng 12 2018

\(\frac{x^2+2}{x+2}=\frac{x\left(x-1\right)+x+2}{x+2}=\frac{x\left(x-1\right)}{x+2}+1\ge1\left(x>0\right)\)

Dấu "=" xảy ra khi x - 1 = 0 tức là x = 1

9 tháng 5 2020

\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)

Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)

Dấu "=" xảy ra khi x = y = a

vậy ....

8 tháng 1 2019

a,\(A=x^2-2x+\frac{1}{x-1}\)

\(A=x^2-2x+1-\frac{x-2}{x-1}\)

\(A=\left(x-1\right)^2+\frac{-\left(x-2\right)}{x-1}\ge\frac{-\left(x-2\right)}{x-1}\)

Do \(x-2>x-1\Rightarrow-\left(x-2\right)< x-1\)

Mà \(\frac{-\left(x-2\right)}{x-1}\ge-1\)

Vậy Min A = -1 <=> x = 1

19 tháng 2 2018

\(A=\frac{x}{3}+\frac{3}{x-2}\)

\(=\frac{x-2}{3}+\frac{3}{x-2}+\frac{2}{3}\)

Áp dụng Cauchy nữa là đc