Tính nhanh
S= 2^2+2^3+2^4+...+2^1000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{999}{1000}+\frac{998}{1000}+......+\frac{1}{1000}\)
\(=\frac{999+998+997+........+1}{1000}\)
\(=\frac{499500}{1000}=\frac{999}{2}\)
1/1000 + ... + 997/1000 + 998/1000 + 999/1000 = ( 1 + ... + 997 + 998 + 999 ) / 1000 = 499500/1000 = 4995/10
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
??????????????????|
\(\frac{2}{3}+\frac{1}{3}=1=\frac{2}{2}\)
\(\frac{3}{4}+\frac{2}{4}+\frac{1}{4}=\frac{6}{4}=\frac{3}{2}\);
\(\frac{4}{5}+\frac{3}{5}+\frac{2}{5}+\frac{1}{5}=2=\frac{4}{2}\)
;\(\frac{5}{6}+\frac{4}{6}+\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{15}{6}=\frac{5}{2}\)
Tổng quát:
\(\frac{n-1}{n}+\frac{n-2}{n}+...+\frac{2}{n}+\frac{1}{n}\)(\(n\in N\)) \(=\frac{n-1}{2}\)
Áp dụng:
\(\frac{999}{1000}+\frac{998}{1000}+\frac{997}{1000}+...+\frac{1}{1000}=\frac{999}{2}\).
Xem bài mình đúng không?
đặt A=1.2+2.3+3.4+...+99.100
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=99.100.101
A=(99.100.101):3
a)A=1+2+22+...+21000
2A=2(1+2+22+...+21000)
2A=2+22+...+21001
2A-A=(2+22+...+21001)-(1+2+22+...+21000)
A=21001-1
b)B=3+32+...+32015
3B=3(3+32+...+32015)
3B=32+33+...+32016
3B-B=(32+33+...+32016)-(3+32+...+32015)
2B=22016-3
\(B=\frac{2^{2016}-3}{2}\)
c)C=4+42+...+4n
4C=4(4+42+...+4n)
4C=42+43+...+4n+1
4C-C=(42+43+...+4n+1)-(4+42+...+4n)
3C=4n+1-4
\(C=\frac{4^{n+1}-4}{3}\)
Ta có: A = 1 + 2 + 22 + ...... + 2100
=> 2A = 2 + 22 + 23 + ...... + 2101
=> 2A - A = 2101 - 1
=> A = 2101 - 1
B = 3 + 32 + 33 + ...... + 22015
=> 3B = 32 + 33 + 34 + ...... + 22016
=> 3B - B = 32016 - 3
=> 2B = 32016 - 3
=> B = 32016 - 3/2
C = 4 + 42 + 43 + .... + 4n
=> 4C = 42 + 43 + 44 + ..... + 4n + 1
=> 4C - C = 4n + 1 - 4
=> 3C = 4n + 1 - 4
=> C = 4n + 1 - 4 / 3
=>2S=2(22+23+...+21000)
=>2S=23+24+...+21001
=>2S-S=S=(23+24+...+21001)-(22+23+24+...+21000)
=>S=21001-22
=>S=21001-4
S= 2^2+2^3+2^4+...+2^1000
Sx2=( 2^2+2^3+2^4+...+2^1000)x2
Sx2= 2^3+2^4+2^5+...+2^1001
Sx2-S=2^3+2^4+2^5+...+2^1001-2^2-2^3-2^4-...-2^1000
S=2^2001-2^2
Vậy S=2^2001-2^2
Tick nhé