K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Áp dụng hệ thức lượng trong tam giác vuông ABC ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng hệ thức lượng trong tam giác vuông ABC ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a) \(A+B=-12x^2y^4-6x^2y^4=-18x^2y^4\)

\(A+C=-12x^2y^4+9x^2y^4=-3x^2y^4\)

\(B+C=-6x^2y^4+9x^2y^4=3x^2y^4\)

26 tháng 3 2021

a) A+B=−12x2y4−6x2y4=−18x2y4A+B=−12x2y4−6x2y4=−18x2y4

A+C=−12x2y4+9x2y4=−3x2y4A+C=−12x2y4+9x2y4=−3x2y4

B+C=−6x2y4+9x2y4=3x2y

 

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

1.

Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{4}$

$=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b+3c}{2+6+12}=\frac{-20}{20}=-1$

$\Rightarrow a=2(-1)=-2; b=3(-1)=-3; c=4(-1)=-4$

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

2.

$S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{9900}$
$=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{100-99}{99.100}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}$

$=1-\frac{1}{100}=\frac{99}{100}$

3 tháng 5 2023

a) Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

\(\Rightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=\dfrac{-20}{20}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right)\cdot2=-2\\b=\dfrac{\left(-1\right).6}{2}=-3\\c=\dfrac{\left(-1\right).12}{3}=-4\end{matrix}\right.\)

b) Ta có : \(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)

\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\).

Vậy : \(S=\dfrac{99}{100}.\)

3 tháng 5 2023

a)\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=-\dfrac{20}{20}=-1\)

\(\left\{{}\begin{matrix}\dfrac{a}{2}=-1\Leftrightarrow a=-2\\\dfrac{b}{3}=-1\Leftrightarrow b=-3\\\dfrac{c}{4}=-1\Leftrightarrow c=-4\end{matrix}\right.\)

b)\(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)

a: \(f\left(-3\right)=3\cdot9=27\)

\(f\left(2\sqrt{2}\right)=3\cdot8=24\)

\(f\left(1-2\sqrt{3}\right)=3\cdot\left(13-4\sqrt{3}\right)=39-12\sqrt{3}\)

b: Ta có: \(f\left(a\right)=12+6\sqrt{3}=\left(3+\sqrt{3}\right)^2=3\left(\sqrt{3}+1\right)^2\)

nên \(3x^2=3\left(\sqrt{3}+1\right)^2\)

hay \(x\in\left\{\sqrt{3}+1;-\sqrt{3}-1\right\}\)

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

c.

$f(b)\geq 6b+12$

$\Leftrightarrow 3b^2\geq 6b+12$

$\Leftrightarrow b^2\geq 2b+4$

$\Leftrightarrow b^2-2b-4\geq 0$

$\Leftrightarrow (b-1-\sqrt{5})(b-1+\sqrt{5})\geq 0$

$\Leftrightarrow b\geq 1+\sqrt{5}$ hoặc $b\leq 1-\sqrt{5}$

10 tháng 1 2024

Ta có: \(a+b+c=6\)

\(\Rightarrow\left(a+b+c\right)^2=6^2\)

\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=36\)

Mà: \(a^2+b^2+c^2=12\left(1\right)\) 

\(\Rightarrow12+2ab+2ac+2bc=36\)

\(\Rightarrow2ab+2ac+2bc=24\)

\(\Rightarrow ab+ac+bc=12\left(2\right)\)

Từ (1) và (2) \(\Rightarrow a^2+b^2+c^2=ab+ac+bc\) 

\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

Mà: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(a-c\right)^2\ge0\forall a,c\\\left(b-c\right)^2\ge0\forall b,c\end{matrix}\right.\)

Dấu "=" xảy ra: 

\(\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Leftrightarrow a=b=c=\dfrac{6}{3}=2\) 

\(\Rightarrow P=\left(2-3\right)^{2023}+\left(2-3\right)^{2023}+\left(2-3\right)^{2023}\\ =\left(-1\right)^{2023}+\left(-1\right)^{2023}+\left(-1\right)^{2023}=-1-1-1=-3\)

17 tháng 3 2020

wow cái tên, VỖ TAY

bạn không học cũng giỏi mà, tự giải đi

10 tháng 8 2016

a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)       (1)

Thay a+b=7 và ab=12 vào (1) ta được:

\(\left(a-b\right)^2=7^2-4.12=49-48=1\)

Vậy:.....

b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)     (2)

Thay a-b=6 và ab = 3 vào (2) ta được:

\(\left(a+b\right)^2=6^2+4.3=36+12=48\)

Vậy:....

c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)    (3)

Thay ab = 6 và a+b = -5 vào (3) ta được:

\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)

Vậy......