Tìm tất cả các giá trị thực của tham số a(a>0) thỏa mãn 2 a + 1 2 a 2017 ≤ 2 2017 + 1 2 2017 a
A. 0 < a < 1
B. 1 < a < 2017
C. a ≥ 2017
D. 0 < a ≤ 2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) A là số tự nhiên khi và chỉ khi 4x\(⋮\)x-2 =>x-2 là ước của 4 và x-2 \(\ge\)1=>x={3;4;6}
b) |A| > A khi và chỉ khi A âm=> x<2
2.b2c+2014 hay b2c+2017 bạn
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{3} \Leftrightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}(vì a+b+c=3)\)
\(\Leftrightarrow \dfrac{1}{a}+ \dfrac{1}{b}= \dfrac{1}{a+b+c}- \dfrac{1}{c }\)
\(\Leftrightarrow \dfrac{b+a}{ab}=\dfrac{c-a-b-c}{ac+bc+c^{2}}\)
\(\Leftrightarrow \dfrac{a+b}{ab}=\dfrac{a+b}{-ac-bc-c^2}\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab=-ac-bc-c^2 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab+ac+bc+c^2=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ (a+c)(b+c)=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ a+c=0\\ b+c=0 \end{array} \right.\)
Vì vai trò của a,b,c là như nhau nên ta giả sử a+b=0
mà a+b+c=0
\(\Rightarrow c=3\)
Thay c=3 vào biểu thức P ta có:
\(P=(a-3)^{2017}.(b-3)^{2017}.(3-3)^{2017} =0 \)
Vậy P=0
1) \(E^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+y^2\right)-4xy}{2\left(x^2+y^2\right)+4xy}=\frac{5xy-4xy}{5xy+4xy}=\frac{xy}{9xy}=\frac{1}{9}\)
\(\Rightarrow E=\frac{1}{3}\)(vì x>y>0)
2) Ta có \(x+y+z=0\Rightarrow x+y=1-z\)
Lại có : \(1=\left(x+y+z\right)^2=1+2\left(xy+yz+xz\right)\Rightarrow2xy+2yz+2xz=0\Rightarrow2xy=-2z\left(x+y\right)=-2z\left(1-z\right)\)Thay vào \(x^2+y^2+z^2=1\) được :
\(\left(x+y\right)^2-2xy+z^2=1\)\(\Leftrightarrow\left(1-z\right)^2-2z\left(1-z\right)+z^2=1\Leftrightarrow4z^2-4z=0\Leftrightarrow z\left(z-1\right)=0\Leftrightarrow\orbr{\begin{cases}z=0\\z=1\end{cases}}\)
Với z = 0 => x + y = 1 và x2+y2 = 1 => x = 0 , y = 1 hoặc x = 1 , y =0
=> A = 1
Tương tự với z = 1 , ta cũng có x = 0 , y = 0 => A = 1
Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu b tại đây nhé.
Đáp án C
Ta có 2 a + 1 2 a 2017 ≤ 2 2017 + 1 2 2017 a ⇔ 1 + 4 a 2017 ≤ 1 + 4 2017 a ⇔ ln 1 + 4 a a ≤ ln 1 + 4 2017 2017
Xét hàm số f t = ln 1 + 4 t t với t ∈ 0 ; + ∞ ⇒ Hàm số nghịch biến trên khoảng 0 ; + ∞
Mà ln 1 + 4 a a ≤ ln 1 + 4 2017 2017 ⇔ f a ≤ f 2017 suy ra a ≥ 2017