Tìm tập xác định của hàm số y = 1 − 2 x 1 3 .
A. D = 0 ; + ∞ .
B. D = − ∞ ; 1 2 .
C. D = − ∞ ; 1 2
D. D = ℝ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)
b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)
c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)
Đáp án C
Hàm số đã cho xác định khi và chỉ khi 2 - x > 0 <=> x < 2. Vậy D = ( - ∞ ; 2 )
a: TXĐ: D=R
b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)
\(f\left(0\right)=\sqrt{0+1}=1\)
\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)
\(f\left(2\right)=\sqrt{3}\)
Do 0 < x < 1 nên 1/x > 1, 1/(1-x) > 1 suy ra y > 2, ∀x ∈ D, do chọn B và C sai. Mặt khác, dễ thấy khi x = 1/2 thì y = 4 suy ra D sai
Đáp án: A
Đáp án B
Hàm số xác định khi 1 − 2 x > 0 ⇔ x < 1 2