K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

Chọn A

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

14 tháng 8 2021

\(\Delta'=b'^2-ac=\left(m-1\right)^2-\left(m^2-3\right)=4-2m\)

Để pt có 2 nghiệm pb : \(m< 2\)

Theo định lí vi - et :

\(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1.x_2=m^2-3\end{matrix}\right.\)

Mà \(x_1=3x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=m-1\\3x^2_2=m^2-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m-1}{4}\\x_2=\pm\dfrac{\sqrt{m^2-3}}{\sqrt{3}}\end{matrix}\right.\)

15 tháng 8 2021

A=6

B=-6

C=-15

D=15

30 tháng 4 2023

\(\Delta'=\left(m+3\right)^2-\left(m^2-3\right)=m^2+6m+9-m^2+3=6m+12\)

Để pt có 2 nghiệm khi m >= -2 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=m^2-3\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-3x_1x_2=22\Leftrightarrow4\left(m+3\right)^2-3m^2+9=22\)

\(\Leftrightarrow m^2+24m+23=0\Leftrightarrow m=-1\left(tm\right);m=-23\left(l\right)\)

a: Khi m=2 thì (1) sẽ là x^2+2x+1=0

=>x=-1

b:x1+x2=52

=>2m-2=52

=>2m=54

=>m=27

4 tháng 3 2021

x2 - (2m + 3)x + 4m + 2 = 0

Có: \(\Delta\) = [-(2m + 3)]2 - 4.1.(4m + 2) = 4m2 + 12m + 9 - 16m - 8 = 4m2 - 4m + 1 = (2m - 1)2

Vì (2m - 1)2 \(\ge\) 0 với mọi m hay \(\Delta\) \(\ge\) 0

\(\Rightarrow\) Pt luôn có nghiệm với mọi m

Chúc bn học tốt!

Ta có: \(\Delta=\left(2m+3\right)^2-4\cdot1\cdot\left(4m+2\right)\)

\(\Leftrightarrow\Delta=4m^2+12m+9-4\left(4m+2\right)\)

\(\Leftrightarrow\Delta=4m^2+12m+9-16m-8\)

\(\Leftrightarrow\Delta=4m^2-4m+1\)

\(\Leftrightarrow\Delta=\left(2m-1\right)^2\ge0\forall m\)

Vậy: Phương trình luôn có nghiệm với mọi m

6 tháng 6 2021

có ai giúp e ko ạ

 

\(\Delta=\left(2m+4\right)^2-4\left(3m+2\right)\)

\(=4m^2+16m+16-12m-8\)

\(=4m^2+4m+8\)

\(=\left(2m+1\right)^2+7>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m+4\\x_1x_2=3m+2\end{matrix}\right.\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=2m+4\\-2x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1=2m+1\\x_1+x_2=2m+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2}{3}m+\dfrac{1}{3}\\x_2=2m+4-\dfrac{2}{3}m-\dfrac{1}{3}=\dfrac{4}{3}m+\dfrac{11}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=3m+2\)

nên \(\left(\dfrac{2}{3}m+\dfrac{1}{3}\right)\left(\dfrac{4}{3}m+\dfrac{11}{3}\right)=3m+2\)

\(\Leftrightarrow m^2\cdot\dfrac{8}{9}+\dfrac{22}{9}m+\dfrac{4}{9}m+\dfrac{11}{9}=3m+2\)

\(\Leftrightarrow m^2\cdot\dfrac{8}{9}-\dfrac{1}{9}m-\dfrac{7}{9}=0\)

\(\Leftrightarrow8m^2-m-7=0\)

\(\Leftrightarrow\left(m-1\right)\left(8m+7\right)=0\)

=>m=1 hoặc m=-7/8

30 tháng 4 2020

Phương trình có hai nghiệm fan biệt <=> \(\Delta>0\)

<=> \(\left(m-1\right)^2+4m>0\Leftrightarrow\left(m+1\right)^2>0\)

<=> \(m\ne-1\)

Áp dụng viet ta có: \(x_1x_2=-m;x_1+x_2=m-1\)

Khi đó; 

\(x_1\left(3-x_2\right)+20\ge3\left(3-x_2\right)\)

<=> \(3\left(x_1+x_2\right)-x_1x_2+11\ge0\)

=>\(3\left(m-1\right)+m+11\ge0\)

<=> \(m\ge-2\) 

30 tháng 4 2020

Ta có: \(\Delta=\left(m-1\right)^2+4m=\left(m+1\right)^2\)

Phương trình có 2 nghiệm phân biệt x1;x2 khi \(\Delta\)>0 <=> m\(\ne\)-1

Ta có: \(\hept{\begin{cases}x_1+x_2=m+1\\x_1\cdot x_2=-m\end{cases}}\)

Theo bài ra ta có:

\(x_1\left(3-x_2\right)+20\ge3\left(3-x_2\right)-x_1x_2\ge-11\)

\(\Leftrightarrow3\left(m-1\right)+m\ge-11\)

<=> \(4m\ge-8\Leftrightarrow m\ge-2\)

Vậy \(m\ge-2;m>-1\)thì phương trình có 2 nghiệm phân biệt thỏa mãn yêu cầu đề bài

16 tháng 1 2024

Ta có pt: \(mx^2-3\left(m+1\right)x+m^2-13m-4=0\)

Do pt có nghiệm là x = -2 nên thay vào pt ta có: 

\(m\cdot\left(-2\right)^2-3\left(m+1\right)\cdot-2+m^2-13m-4=0\)

\(\Leftrightarrow4m+6\left(m+1\right)+m^2-13m-4=0\)

\(\Leftrightarrow6m+6+m^2-9m-4=0\)

\(\Leftrightarrow m^2-3m+2=0\)

\(\Delta=\left(-3\right)^2-4\cdot1\cdot2=1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{3+\sqrt{1}}{2}=2\\m_2=\dfrac{3-\sqrt{1}}{2}=1\end{matrix}\right.\)

Nếu m = 1 thì pt là: 

\(x^2-3\left(1+1\right)x+1^2-13\cdot1-4=0\)

\(\Leftrightarrow x^2-6x-16=0\)

Theo vi-et: \(x_1+x_2=-\dfrac{-6}{1}\Rightarrow x_2=6-x_2=8\) 

Nếu m = 2 thì pt là:

\(2x^2-3\cdot\left(2+1\right)x+2^2-13\cdot2-4=0\)

\(\Leftrightarrow2x^2-9x-26=0\)  

Theo vi-et: \(x_1+x_2=-\dfrac{-9}{2}\Leftrightarrow x_2=\dfrac{9}{2}+2=\dfrac{13}{2}\)

16 tháng 1 2024

còn một nghiệm nữa của x :v