Chứng tỏ với mọi a,b thộc N* thì ( a + b ) . (1/a + 1/b) > hoặc = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


giúp mình nha chiều nay mình phải nộp cho thầy giáo rồi. 3 bài minh vừa mới gửi đó.
chúc các bạn có ngày cá tháng tư vui vẻ!

Ta có: A = ( a + b )( a - b )
Suy ra A = a( a - b ) + b( a - b )
Suy ra A = a2 - ab + ab - b2
Suy ra A = a2 - b2
*TH1: Nếu a = b
Thì a2 = b2
Suy ra a2 - b2 = 0
Mà 0 chia hết cho 4
Suy ra a2 - b2 chia hết cho 4
*TH2: Nếu a > b
Mà b >= 1
Nên a > 1
Suy ra a >= 3
Mà a2 - b2 = ( a - b )2 + 2ab - 2b2
Ta lại có ( a - b )2 chia hết cho 4 với a > b và a, b là số lẻ
Ta có: 2ab - 2b2 = 2b( a - b )
Mà a,b là số lẻ
Nên a - b chia hết cho 2
Đặt a - b = 2k ( k là số tự nhiên )
Suy ra 2b( a - b ) = 2b.2k = 4ak
Mà 4ak chia hết cho 4
Suy ra 2ab - 2b2 chia hết cho 4
Mà ( a - b )2 chia hết cho 4
Nên ( a - b )2 + 2ab - 2b2 chia hết cho 4
Suy ra a2 - b2 chia hết cho 4
Vậy nếu a, b là số tự nhiên thì A - ( a + b )( a + b ) chia hết cho 4 với a, b là số lẻ và a >= b
*Lưu ý: Bài viết thuộc quyền sở hữu của Nguyễn Văn Hưởng Corporation, vui lòng không sao chép dưới mọi hình thức.

\(1.CMR:\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1=\frac{a}{b}+\frac{b}{a}+2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
\(\Rightarrow\frac{a}{b}+\frac{b}{a}+2\ge2+2=4\)
Dấu '' = '' xảy ra khi \(a=b\)
\(2.\\ a.CMR:a^2+2b^2+c^2-2ab-2bc\ge0\forall a,b,c\)
\(a^2+2b^2+c^2-2ab-2bc=a^2-2ab+b^2+c^2-2bc+b^2=\left(a-b\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)
Dấu '' = '' xảy ra khi \(a=b=c\)
\(b.CMR:a^2+b^2-4a+6b+13\ge0\forall a,b\)
\(a^2+b^2-4a+6b+13=\left(a^2-4a+4\right)+\left(b^2+6b+9\right)=\left(a-2\right)^2+\left(b+9\right)^2\ge0\forall a,b\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-9\end{matrix}\right.\)

Bài 1 :
Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
= 2(2+n)+ m(2+n)
= 4+ 2n+ 2m+ mn
= 4+ m+ m+ n+ n+ mn
= (4+ m+ n) +(m +n +mn)
= (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm
~ Hok tốt ~
1)\(\hept{\begin{cases}a>2\\b>2\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}< \frac{1}{2}\\\frac{1}{b}< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}< 1\Leftrightarrow\frac{a+b}{ab}< 1\Leftrightarrow a+b< ab\)
2) \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)

a) Áp dụng BĐT côsi ta có:\(\frac{a}{b}+\frac{b}{a}>=2\cdot\sqrt[2]{\frac{a}{b}\cdot\frac{b}{a}}=2\)
b)bạn nhân hết ra rồi áp dụng BĐT cối là được!!!!
1/a, 1/b là 1 phần a, 1 phần b
trong toán học người ta kí hiệu thế mà