Chứng minh A không chia hết cho 9, biết:
A = ( a-1).(a+2)+12 không chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Gỉa sử :(a+9).(a+2)+21 chia hết cho 49
=>(a+9).(a+2) +21chia hết cho 7 mà 21 chia hết cho7
=>(a+2+7).(a+2) chia hết cho 7
=>(a+2)2+7.(a+2) chia hết cho 7 mà 7.(a+2) chia hết cho 7
=>(a+2)2 chia hết cho 7 =>(a+2)2 chia hết cho 49;a+2 chia hết cho 7
Khi đó:(a+2)2+7.(a+2) +21 chia hết cho 49 mà (a+2)2+7.(a+2) chia hết cho 49(vì a+2 chia hết cho 7)
=>21 chia hết cho 49 mà 21 không chia hết cho 49
=>(a+2)2+7.(a+2) +21 không chia hết cho 49
Vậy (a+9).(a+2) +21 không chia hết cho 49
b,Gỉa sử:(a-1).(a+2) +12 chia hết cho 9
=>(a-1).(a+2) +12 chia hết cho 3 mà 12 chia hết cho 3
=>(a-1).(a+2) chia hết cho 3
=>(a-1).(a-1+3) chia hết cho 3
=>(a-1)2+3.(a-1) chia hết cho 3 mà 3.(a-1)chia hết cho 3
=>(a-1)2 chia hết cho 3=>(a-1) chia hết cho 3
Khi đó :(a-1)2+3(a-1)+12 chia hết cho 9 mà (a-1)2 và 3(a-1) chia hết cho 9(vì a-1 chia hết cho 3)
=>12 chia hết cho 9 mà 12 không chia hết cho 9
=>(a-1)2+3.(a-1) +12 không chia hết cho 9
Vậy (a-1).(a+2) +12 không chia hết cho 9
=>
=>
Ta thấy: a + 9 - a - 2 = 7 chia hết cho 7 => a + 9 và a + 2 có cùng số dư khi chia cho 7
Xét 2 trường hợp xảy ra.
TH1: a + 2 và a + 9 đều chia hết cho 7
=> (a + 2)(a + 9) chia hết cho 49
Mà 21 không chia hết cho 49
=> (a + 2)(a + 9) + 21 không chia hết cho 49
TH2: a + 2 và a + 9 đều không chia hết cho 7
=> (a + 2)(a + 9) không chia hết cho 7, mà 21 chia hết cho 7
=>(a + 2)(a + 9) + 21 không chia hết cho 7 => Không chia hết cho 49
Từ 2 TH => (a + 9) . (a + 2) + 21 không chia hết cho 49 với mọi n
1a)Tacó:12 ko chia hết cho 9
=>(a-1).(a+2) ko chia hết cho 9
=>(a+1).(a+2)+12 ko chia hết cho 9
Câu b giải giống như câu a nhé!!!!!!!!!!!!!!!!
4. x + 16 chia hết cho x + 1
Ta có
x + 16 = ( x + 1 ) + 15
Mà x + 1 chia hết cho 1
=> 15 phải chia hết cho x + 1
=> x + 1 thuộc Ư(15)
Ư(15) = { 1 ; 15 ; 3 ; 5 }
TH1 : x + 1 = 1 => x = 1 - 1 = 0
TH2 : x + 1 = 15 => x = 15 - 1 = 14
TH3 : x + 1 = 3 => x = 3 - 1 = 2
TH4 : x + 1 = 5 => x = 5 - 1 = 4
Vậy x = 0 ; 14 ; 4 ; 2
1
a . Để A chia hết cho 9 thì các số hạng của nó phải chia hết cho 9
Mà 963 , 2439 , 361 chia hết cho 9
=> x cũng phải chia hết cho 9
Vậy điều kiện để A chia hết cho 9 là x chia hết cho 9
Và ngược lại để A ko chia hết cho 9 thì x không chia hết cho 9
b. Tương tự phần trên nha
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
1 Ta có
10^2010=10000...0000(2010 số 0)+8
=100000...0000(2009 số 0)8
=(1+0+8)=9 mà 9 chi hết cho 9
suy ra 10^2010+8 chia hết cho 9
2.Nếu số a và số b cùng chẵn thì a+b chẵn suy ra ab(a+b) Chia hết cho 2
Nếu hai số cùng lẻ suy ra a+b chẵn suy ra ab(a+b) Chia hết cho 2
Nếu a chẵn ,b lẻ suy ra ab chia hết cho 2 suy ra ab(a+b) chia hết cho 2
Nếu a lẻ ,b chẵn thì ab chia hết cho 2 suy ra ab(a+b) chia hết cho 2
Vậy ab(a+b) chia hết cho 2
bài toán lạ nhỉ,đã cho A chia hết cho 9 mà còn bào c/m nữa sao?
xem lại đề