bài 3 tìm x thuộc z biết
3x2 + 12x=0 (x2+5) .(x+3)>0
bài 4 tìm x,y thuộc z
(x-2) (y+3) =5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Bài 1 :
\(3x+5=2\left(x-\frac{1}{4}\right)\)
\(\Leftrightarrow3x+5=2x-\frac{1}{2}\)
\(\Leftrightarrow5+\frac{1}{2}=2x-3x\)
\(\Leftrightarrow\frac{11}{2}=-x\)
\(\Leftrightarrow\frac{-11}{2}=x\)
Vậy \(x=\frac{-11}{2}\)
Bài 2:
a, \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{2018}{2019}\right|\ge0\\\left|z-3\right|\ge0\end{cases}}\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
\(\Rightarrow+,\left|x+\frac{19}{5}\right|=0\)
\(\Leftrightarrow x+\frac{19}{5}=0\)
\(\Leftrightarrow x=\frac{-19}{5}\)
\(\Rightarrow+,\left|y+\frac{2018}{2019}\right|=0\)
\(\Leftrightarrow y+\frac{2018}{2019}=0\)
\(\Leftrightarrow y=\frac{-2018}{2019}\)
\(\Rightarrow+,\left|z-3\right|=0\)
\(\Leftrightarrow z-3=0\)
\(\Leftrightarrow z=3\)
Vậy \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-2018}{2019}\\z=3\end{cases}}\)
b, Ta có : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
Vì : \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y+4\right|\ge0\\\left|z-5\right|\ge0\end{cases}}\)
Mà : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
\(\Rightarrow+,\left|x-\frac{1}{2}\right|\ge0\)
\(\Rightarrow x\inℚ\)
\(\Rightarrow+,\left|2y+4\right|\ge0\)
\(\Rightarrow y\inℚ\)
\(\Rightarrow+,\left|z-5\right|\ge0\)
\(\Rightarrow z\inℚ\)
Vậy chỉ cần \(\hept{\begin{cases}x\inℚ\\y\inℚ\\z\inℚ\end{cases}}\)thì thỏa mãn.
b2:
theo công thức: âm*âm= dương
dương * âm = âm
dương * dương = dương
Suy ra: x<7 và (x-7).(x+3) trái dấu6
nên x={ 6;5;4;3;2;1}