Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4y^2-\left(x^2-10x+25\right)\)
\(A=4y^2-\left(x-5\right)^2\)
\(A=\left(2y-x-5\right)\left(2y+x-5\right)\)
\(B=\left(x-4\right)^4-\left(x+a\right)^4\)
\(B=\left(\left(x-4\right)^2\right)^2-\left(\left(x+a\right)^2\right)^2\)
\(B=\left(\left(x-4\right)^2-\left(x+a\right)^2\right)\left(\left(x-4\right)^2+\left(x+a\right)^2\right)\)
\(B=\left(x-4\right)\left(x+a\right)\left(\left(x-4\right)^2+\left(x+a\right)^2\right)\)
\(C=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)
\(C=\left(x^2+x\right)\left(x^2+x+2\right)+1\)
Câu 1:
$(2x^2-3)(x+5)=2x^2(x+5)-3(x+5)=2x^3+10x^2-3x-15$
Câu 2:
a.
$(x+3)^2=x^2+2.x.3+3^2=x^2+6x+9$
b.
$y^2-25=y^2-25$
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{5}=\frac{2xy-3y^2-4yz}{2.3.6-3.6^2-4.6.5}=\frac{24}{-192}=\left(-\frac{1}{8}\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-\frac{1}{8}\right)\Rightarrow x=\left(-\frac{3}{8}\right)\\\frac{y}{6}=\left(-\frac{1}{8}\right)\Rightarrow y=\left(-\frac{3}{4}\right)\\\frac{z}{5}=\left(-\frac{1}{8}\right)\Rightarrow z=\left(-\frac{5}{8}\right)\end{cases}}\)
Vậy ....
\(b,\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2x+3y-5z}{2.2+3.3-5.5}=\frac{\left(-12\right)}{\left(-12\right)}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=1\Rightarrow x=2\\\frac{y}{3}=1\Rightarrow y=3\\\frac{z}{5}=1\Rightarrow z=5\end{cases}}\)
Vậy ...
1: \(=a\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(a-4\right)\)
2: \(=x\left(x+b\right)+a\left(x+b\right)=\left(x+b\right)\left(x+q\right)\)
3: \(=a\left(x+1\right)-b\left(x+1\right)+c\left(x+1\right)\)
\(=\left(x+1\right)\left(a-b+c\right)\)
6: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
Bài 1:
a) \(x^2-2xy-25+y^2\) (Sửa đề)
\(=x^2-2xy+y^2-25\)
\(=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
Vậy ...
b) \(x\left(x-1\right)+y\left(1-x\right)\)
\(=x\left(x-1\right)-y\left(x-1\right)\)
\(=\left(x-1\right)\left(x-y\right)\)
Vậy ...
c) \(7x+7y-\left(x+y\right)\) (Sửa đề)
\(=7\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(7-1\right)\)
\(=6\left(x+y\right)\)
Vậy ...
d) \(x^4+y^4\)
\(=\left(x^2\right)^2+\left(y^2\right)^2\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(x^2+y^2-\sqrt{2}xy\right)\left(x^2+y^2+\sqrt{2}xy\right)\)
Vậy ...