Trong không gian cho bốn mặt cầu có bán kính lần lượt là 2; 3; 3; 2 (đơn vị độ dài) đôi một tiếp xúc nhau. Mặt cầu nhỏ tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
A B = A C = 13 , B C = 4 , d ( A , B C ) = 3 . Do R 1 = 2 R 2 = 2 R 3 nên các khoảng cách từ A đến (P) gấp đôi khoảng cách từ B,C đến (P). gọi M, N lần lượt là điểm đối xứng của A qua B,C. và P,Q là điểm trên canh AB,AC sao cho A P = 2 B P , A Q = 2 Q C . Bài toán quy về tìm các mp (P) chính là các mặt phẳng đi qua MN,MQ,NP,PQ sao cho d ( A , ( P ) ) = 2
TH1: d ( A , P Q ) = 2 nên chỉ có duy nhất 1 mp (P) qua PQ sao cho d ( A , ( P ) ) = 2
TH2: d ( A ; M N ) , d ( A , M Q ) , d ( A ; N P ) đều lớn hơn 2 nên mỗi TH sẽ có 2 mp qua các cạnh MN,MQ,NP sao cho khoảng cách từ A đến nó bằng 2
Vậy có tất cả 7 mp thỏa mãn yêu cầu
Đáp án C
Ta có: II' = 6 = R + R'
Ta có: MN ≥ MI + II' + I'N = R + 6 + R' = 12
Dấu bằng xảy ra khi M, I, I', N theo thứ tự nằm trên một đường thẳng. Do đó M là giao điểm của tia đối của tia II' với mặt cầu (S), N là giao điểm của tia đối của tia I’I với mặt cầu (S’). Vậy đáp án đúng là C.
Ta dễ thấy ba điểm A, B, C thuộc mặt phẳng , 3 mặt cầu là ở ngoài nhau. Mỗi mặt phẳng tiếp xúc với hai mặt cầu thì sẽ có hai tình huống.
1. Cả 3 mặt cầu ở cùng một nửa không gian chia bởi mặt phẳng tiếp xúc. Có 2 mặt phẳng như vậy.
2. Mặt phẳng tiếp xúc chia 2 mặt cầu về một phía và phía còn lại chứa mặt cầu kia. Có 4 mặt phẳng tiếp xúc chia mặt cầu lớn và mặt cầu nhỏ ở cùng một bên. Có một mặt phẳng tiếp xúc chia 2 mặt cầu nhỏ về một bên (ở đây do R + r + d ( A, BC ) nên mới tồn tại 1 mặt phẳng tiếp xúc theo yêu cầu, nếu R + r + d > d ( A, BC ) thì sẽ tồn tại 2 mặt phẳng tiếp xúc)
Đáp án cần chọn là B
Đáp án B.
Do nên các khoảng cách từ A đến (P) gấp đôi khoảng cách từ B,C đến (P). gọi M, N lần lượt là điểm đối xứng của A qua B,C. và P,Q là điểm trên canh AB,AC sao cho AP=2BP, AQ=2QC. Bài toán quy về tìm các mp (P) chính là các mặt phẳng đi qua MN,MQ,NP,PQ sao cho d(A,(P))=2.
TH1: d(A, MQ)=2 nên chỉ có duy nhất 1 mp (P) qua PQ sao cho d(A,(P))=2.
TH2: d(A;MN), d(A;MQ), d(A,NP) đều lớn hơn 2 nên mỗi TH sẽ có 2 mp qua các cạnh MN,MQ,NP sao cho khoảng cách từ A đến nó bằng 2
Vậy có tất cả 7 mp thỏa mãn yêu cầu.
Đáp án B.
Gọi phương trình mặt phẳng cần tìm là
P : + b y + c z + d = 0.
Vì d B ; P = d C ; P = 1 suy ra
m p P / / B C hoặc đi qua trung điểm của BC.
Trường hợp 1: với
s u y r a d A ; P = 2 b + c + d b 2 + c 2 = 2
V à d B ; P = − b + c + d b 2 + c 2 = 1 ⇒ 2 b + c + d = 2 − b + c + d − b + c + d = b 2 + c 2 ⇒ 4 b = c + d c + d = 0 − b + c + d = b 2 + c 2
⇔ 3 b = b 2 + c 2 b = b 2 + c 2 ⇔ 8 b 2 = c 2 ⇒ c = ± 2 2 b c = 0 ⇒ d = 0
Suy ra có ba mặt phẳng thỏa mãn.
Trường hợp 2: Mặt phẳng (P) đi qua trùng điểm B C ⇒ P : a x − 1 + b y + 1 + c z − 1 = 0
Do đó d A ; P = 3 b a 2 + b 2 + c 2 = 2 ; d B ; P = 2 a a 2 + b 2 + c 2 = 1
Suy ra 3 b = 4 a 2 a = a 2 + b 2 + c 2 ⇔ 3 b = 4 a 3 a 2 = b 2 + c 2 ( * )
Chọn a =3 suy ra (*)
⇔ b = 4 b 2 + c 2 = 27 ⇔ b = ± 4 c 2 = 11 ⇒ a ; b ; c = 3 ; 4 ; 11 , 3 ; − 4 ; 11 3 ; 4 ; − 11 , 3 ; − 4 ; − 11 .
Vậy có tất cả 7 mặt phẳng thỏa mãn yêu cầu bài toán.
Đáp án D.
Mặt cầu tiếp xúc với cả ba mặt cầu trên là mặt cầu tiếp xúc ngoài với cả 3 mặt cầu trên. Gọi I là tâm và R là bán kính mặt cầu cần tìm
Ta có:
Đáp án đúng : C