Cho phân số M = n + 1 n (n ∈ ℤ ; n ≠ 0). Tìm n để A là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
không thể, vì để có phân số mới bằng phân số a/b thì m=n và n khác 0
![](https://rs.olm.vn/images/avt/0.png?1311)
có phân số a/b (a;b thuộc Z, b khác 0) và a/b = am/bn khi a = 0
VD :
0/b = 0.m/bn
\(\frac{a}{b}=\frac{a}{b}.\frac{m}{n}\Leftrightarrow\frac{a}{b}\left(1-\frac{m}{n}\right)=0\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=0\\\frac{m}{n}=1\end{cases}}\)
Do \(m\ne n\Rightarrow\frac{m}{n}\ne1\Rightarrow\frac{a}{b}=0\Rightarrow a=0\)
Vậy a=0, b là số nguyên khác 0
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn D.
Tính I = ∫ 1 2 3 d x x + 1 2 x + 3
Đặt t = 2 x + 3 ⇒ t 2 = 2 x + 3 ⇒ 2 t d t = 2 d x x = t 2 - 3 2 ⇒ d x = t d t x + 1 = t 2 - 1 2
Vậy: m = 2, n = -1, T = 3.2 - 1 = 5.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) B = 10 n 5 n − 3 = 10 n − 6 5 n − 3 + 6 5 n − 3 = 2. 5 n − 3 5 n − 3 + 6 5 n − 3 = 2 + 6 5 n − 3
B có giá trị nguyên khi 6 5 n − 3 có giá trị nguyên, tức là 6 ⋮ 5 n − 3 hay 5 n − 3 ∈ Ư ( 6 ) .
Ư ( 6 ) = ± 1 ; ± 2 ; ± 3 ; ± 6
Ta có bảng sau:
Dựa vào bảng ta thấy n ∈ 0 ; 1
b) B đạt giá trị lớn nhất khi 6 5 n − 3 đạt giá trị lớn nhất, tức là 5n-3 đạt giá trị nguyên dương nhỏ nhất, khi n=1. Khi đó GTLN của B là 5.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có 8n+1=8(n+2)-8
=> 8 chia hết cho n+2
n nguyên => n+2 nguyên => n+2 \(\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Ta có bảng
n+2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -10 | -6 | -4 | -3 | -1 | 0 | 2 | 6 |
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: n + 9 là ước số của 4n + 22
=> 4n + 22 chia hết n + 9
<=> (4n + 36) - 14 chia hết n + 9
<=> 4.(n + 9) - 14 chia hết n + 9
=> 14 chia hết n + 9
=> n + 9 \(\in\) Ư(14) = { - 1;1;-2;2;-3;3;-4;4;-7;7-14;14}
=> n= { tự tính hộ nhé}
Ta có: n + 9 là ước số của 4n + 22
=> 4n + 22 chia hết n + 9
<=> (4n + 36) - 14 chia hết n + 9
<=> 4.(n + 9) - 14 chia hết n + 9
=> 14 chia hết n + 9
=> n + 9 $\in$∈ Ư(14) = { - 1;1;-2;2;-3;3;-4;4;-7;7-14;14}
=> n= { tự tính hộ nhé}
Để M = n + 1 n là phân số tối giản thì ƯCLN ( n +1,n) = 1
Gọi ƯCLN ( n + 1,n) = d => n + 1 ⋮ d; n ⋮ d
=> ( n + 1) – n ⋮ d=> 1 ⋮ d=> d = 1 với mọi n. Vậy với mọi n ∈ ℤ thì M = n + 1 n là phân số tối giản.