K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

(x+3)2-(x-2)(x+2)

= (x+3)2-(x2-4)

=x2+6x+9-x2+4

=(x2-x2)+6x+(9+4)

=6x+13

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

1.

$(x-2)(x-5)=(x-3)(x-4)$

$\Leftrightarrow x^2-7x+10=x^2-7x+12$
$\Leftrightarrow 10=12$ (vô lý)

Vậy pt vô nghiệm.

2.

$(x-7)(x+7)+x^2-2=2(x^2+5)$

$\Leftrightarrow x^2-49+x^2-2=2x^2+10$
$\Leftrightarrow 2x^2-51=2x^2+10$

$\Leftrightarrow -51=10$ (vô lý)

Vậy pt vô nghiệm.

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

3.

$(x-1)^2+(x+3)^2=2(x-2)(x+2)$
$\Leftrightarrow (x^2-2x+1)+(x^2+6x+9)=2(x^2-4)$
$\Leftrightarrow 2x^2+4x+10=2x^2-8$

$\Leftrightarrow 4x+10=-8$

$\Leftrightarrow 4x=-18$

$\Leftrightarrow x=-4,5$

4.

$(x+1)^2=(x+3)(x-2)$

$\Leftrightarrow x^2+2x+1=x^2+x-6$

$\Leftrightarrow x=-7$ 

 

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn. 

4 tháng 3 2021

x^2+2x-3/3+2x/4=x^2/3

a: =>9x^2+12x+4-9x^2+12x-4=5x+38

=>24x=5x+38

=>19x=38

=>x=2

e: =>x^3+1-2x=x^3-x

=>-2x+1=-x

=>-x=-1

=>x=1

f: =>x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1

=>12x-9=3x+1

=>9x=10

=>x=10/9

b: \(\Leftrightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)

=>-3x+3=3x-9

=>-6x=-12

=>x=2

a) Ta có: \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+4x+4+2x-8=x^2-6x+8\)

\(\Leftrightarrow x^2+6x-4-x^2+6x-8=0\)

\(\Leftrightarrow12x-12=0\)

\(\Leftrightarrow12x=12\)

hay x=1

Vậy: S={1}

b) Ta có: \(\left(x+1\right)\left(2x-3\right)-3\left(x-2\right)=2\left(x-1\right)\)

\(\Leftrightarrow2x^2-3x+2x-3-3x+6=2x-2\)

\(\Leftrightarrow2x^2-4x+3-2x+2=0\)

\(\Leftrightarrow2x^2-6x+5=0\)

\(\Leftrightarrow2\left(x^2-3x+\dfrac{5}{2}\right)=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}=0\)(Vô lý)

Vậy: \(S=\varnothing\)

c) Ta có: \(\left(x+3\right)^2-\left(x-3\right)^2=6x+18\)

\(\Leftrightarrow x^2+6x+9-\left(x^2-6x+9\right)-6x-18=0\)

\(\Leftrightarrow x^2-9-x^2+6x-9=0\)

\(\Leftrightarrow6x-18=0\)

\(\Leftrightarrow6x=18\)

hay x=3

Vậy: S={3}

d) Ta có: \(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)

\(\Leftrightarrow x^3-3x^2+3x-1-x\left(x^2+2x+1\right)=5x-5x^2-11x-22\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=-5x^2-6x-22\)

\(\Leftrightarrow-5x^2+2x-1+5x^2+6x+22=0\)

\(\Leftrightarrow8x+21=0\)

\(\Leftrightarrow8x=-21\)

hay \(x=-\dfrac{21}{8}\)

Vậy: \(S=\left\{-\dfrac{21}{8}\right\}\)

5 tháng 2 2021

Xl nhưng câu b) mik ghi sai đề bại ạ

b) (x+1)(2x-3)-3(x-2)=2(x-1)\(^2\)

1: =>x^2+4x-21=0

=>(x+7)(x-3)=0

=>x=3 hoặc x=-7

2: =>(2x-5-4)(2x-5+4)=0

=>(2x-9)(2x-1)=0

=>x=9/2 hoặc x=1/2

3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15

=>-9x^2+27x+9x^2+18x+9=15

=>18x=15-9-27=-21

=>x=-7/6

6: =>4x^2+4x+1-4x^2-16x-16=9

=>-12x-15=9

=>-12x=24

=>x=-2

7: =>x^2+6x+9-x^2-4x+32=1

=>2x+41=1

=>2x=-40

=>x=-20

1: 

\(\Leftrightarrow\left(x^2+5x+6\right)\left(x^2+5x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x\right)^2+10\left(x^2+5x\right)=0\)

\(\Leftrightarrow x^2+5x=0\)

=>x=0 hoặc x=-5

3: \(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

20 tháng 12 2020

1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)

\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)

3, \(x^4-5x^2+4\)

Đặt \(x^2=t\left(t\ge0\right)\)ta có : 

\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)

\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

29 tháng 3 2022

`Answer:`

1. `45+x^3-5x^2-9x`

`=x^3+3x^2-8x^2-24x+15x+45x`

`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`

`=(x+3).(x^2-8x+15)`

`=(x+3).(x^2-5x-3x+15)`

`=(x-3).(x-5).(x-3)`

2. `x^4-2x^3-2x^2-2x-3`

`=x^4+x^3-3x^3+x^2+x-3x-3`

`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`

`=(x+1).(x^3-3x^2+x-3)`

`=(x+1).[x^3 .(x-3).(x-3)]`

`=(x+1).(x-3).(x^2+1)`

3. `x^4-5x^2+4`

`=x^4-x^2-4x^2+4`

`=x^2 .(x^2-1)-4.(x^2-1)`

`=(x^2-1).(x^2-4)`

`=(x-1).(x+1).(x-2).(x+2)`

4. `x^4+64`

`=x^4+16x^2+64-16x^2`

`=(x^2+8)^2-16x^2`

`=(x^2+8-4x).(x^2+8+4x)`

5. `x^5+x^4+1`

`=x^5+x^4+x^3-x^3+1`

`=x^3 .(x^2+x+1)-(x^3-1)`

`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`

`=(x^2+x+1).(x^3-x+1)`

6. `(x^2+2x).(x^2+2x+4)+3`

`=(x^2+2x)^2+4.(x^2+2x)+3`

`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`

`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`

`=(x^2+2x+1).(x^2+2x+3)`

`=(x+1)^2 .(x^2+2x+3)`

7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`

`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`

`=x^6+8x^4+19x^3+30x^2+88x+64`

8. `x^3 .(x^2-7)^2-36x`

`=x[x^2.(x^2-7)^2-36]`

`=x[(x^3-7x)^2-6^2]`

`=x.(x^3-7x-6).(x^3-7x+6)`

`=x.(x^3-6x-x-6).(x^3-x-6x+6)`

`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`

`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`

`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`

`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`

`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`

9. `x^5+x+1`

`=x^5-x^2+x^2+x+1`

`=x^2 .(x^3-1)+(x^2+x+1)`

`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`

`=(x^2+x+1).(x^3-x^2+1)`

10. `x^8+x^4+1`

`=[(x^4)^2+2x^4+1]-x^4`

`=(x^4+1)^2-(x^2)^2`

`=(x^4-x^2+1).(x^4+x^2+1)`

`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`

`=[(x^2+1)^2-x^2].(x^4-x^2+1)`

`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)

11. ` x^5-x^4-x^3-x^2-x-2`

`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`

`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`

`=(x-2).(x^4+x^3+x^2+x+1)`

12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`

`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`

`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`

`=(x^2-1).(x^7-x^4-x^3+1)`

`=(x-1)(x+1)(x^3-1)(x^4-1)`

`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`

`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`

`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`

13. `(x^2-x)^2-12(x^2-x)+24`

`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`

`=(x^2-x+6)^2-12`

`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`