So sánh
333⁴⁴⁴ với 444³³³
5³⁰⁰ và 3⁴⁵³
13⁴⁰ với 2¹⁶¹
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(5^{300}=25^{150}\)
\(3^{450}=27^{150}\)
mà 25<27
nên \(5^{300}< 3^{450}\)
a: 5300=251505300=25150
3450=271503450=27150
mà 25<27
nên 5300<3450
a)\(333^{444}=\left(333^4\right)^{111};444^{333}=\left(444^3\right)^{111}\)
Lại có \(333^4=3^4.111^4=81.111^4;444^3=4^3.111^3=64.111^3\)
Nên \(333^4>444^3\)
Suy ra \(333^{444}>444^{333}\)
b)\(5^{202}=\left(5^2\right)^{101}=25^{101};2^{505}=\left(2^5\right)^{101}=32^{101}\)
Suy ra \(2^{505}>5^{202}\)
1030= (103)10= 100010
2100=(210)10=102410
1000<1024 =>100010<102410 nên 1030<2100
\(a,10^{30}=2^{30}.5^{30}\)
\(2^{100}=\left(2^{50}\right)^2\)
\(\Rightarrow10^{30}< 2^{100}\)
tt
a) Ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
mà \(1000< 1024\)
\(\Rightarrow1000^{10}< 1024^{10}\)
\(\Rightarrow10^{30}< 2^{100}\)
b) Ta có : \(333^{444}=\left(111.3\right)^{444}=111^{444}.3^{444}=111^{444}.\left(3^4\right)^{111}=111^{444}.81^{111}\)
\(444^{333}=\left(111.4\right)^{333}=111^{333}.4^{333}=111^{333}.\left(4^3\right)^{111}=111^{333}.64^{111}\)
mà \(444>333\Rightarrow111^{444}>111^{333}\)
và \(81>64\Rightarrow81^{111}>64^{111}\)
\(\Rightarrow111^{444}.81^{111}>111^{333}.64^{111}\)
\(\Rightarrow333^{444}>444^{333}\)
c) Ta có : \(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}>13^{40}\)
\(\Rightarrow2^{161}>13^{40}\)
d) Ta có : \(3^{453}>3^{450}=\left(3^3\right)^{150}=27^{150}>25^{150}=\left(5^2\right)^{150}=5^{300}\)
\(\Rightarrow3^{453}>5^{300}\)
333444 >444333
đây:
a)333444 =(3334)111=(1114.34)111
444333=(4443)111=(1113.43)111
Ta có 1114>1113
Và 34=81>43=64
Vậy 333444>444333
bít có mỗi câu a à :)