Chứng minh rằng: 7 6 3 > 7 3 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(p\)là số nguyên tố lớn hơn 3 suy ra p lẻ
\(\Rightarrow p+7⋮2\)(1)
Vì p+2 là 1 số nguyên tố lớn hơn 3 nên chia cho 3 có số dư là 1 hoặc 2
Nếu p+2 chia 3 dư 2 thì \(p⋮3\)(loại)
như vậy p+2 chia 3 dư 1. => \(p+1⋮3\Rightarrow p+1+6⋮3\Rightarrow p+7⋮3\)(2)
Từ (1) và (2) suy ra \(p+7⋮6\)
a, 6 + 62 + 63 + 64
= (6+62) + (63+64)
= 6(1+6) + 63(1+6)
= 6.7 + 63.7
= 7(6+63) chia hết cho 7 (đpcm)
7+72+73+74+.....+710
= (7+72) + (73+74)+.....+(79+710)
=7(1+7) + 73(1+7) +.......+ 79(1+7)
= 7.8 + 73.8 +....... + 79.8
= 8(7 + 73 +....... + 79) chia hết cho 8 (đpcm)
ta có: 7+7^2+7^3+... + 7^8
=( 7+7^2) +( 7^3 +7^4)+...+(7^7 +7^8)
= 50 + 7^2(7+7^2)+...+ 7^6(7+ 7^2)
= 50 + 7^2 . 50+...+ 7^6 . 50
= 50.( 1+7^2 + ... + 7^6) chia hết cho 50
Vậy 7 + 7^2 + 7^3 + 7^4 + 7^5 +7^6 +7^7 +7^8 chia hết cho 50
k cho mk nha
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{20}\)
\(=\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\frac{1}{12}+\left(\frac{1}{13}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{20}\right)\)
\(>\left(\frac{1}{9}+\frac{1}{9}+\frac{1}{9}\right)+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\frac{1}{12}+\left(\frac{1}{16}+...+\frac{1}{16}\right)+\left(\frac{1}{24}+...+\frac{1}{24}\right)\)
\(=\frac{1}{3}+\frac{1}{4}+\frac{1}{12}+\frac{1}{4}+\frac{1}{6}=1+\frac{1}{12}\)
\(B=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{18}+\frac{1}{19}\)
\(=\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+...+\frac{1}{19}\right)\)
\(< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)
\(=\frac{5}{5}+\frac{5}{10}+\frac{5}{15}=1+\frac{5}{6}\)