Tìm a biết a chia 3 dư 2, a chia 5 dư 4, a chia 6 dư 5. Biết 59 < a < 90.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 4.4+3=19;5.5+4=29;6.6+5=41
Suy ra 19+29+41=89;Ta có:
5-(4-3)=4
Nên 89.4=356
Vậy a=356
a=4q+3 = 5q+4 = 6k+5
=> a+1 = 4p+4=5q+5=6k+6
=> a+1 chia hết cho 4;5;6
a+1 là BC(4;5;6) =B(BCNN(4;5;6)) =B(60)
a+1 = 60m ; với m thuộc N
a=60m-1; mà 200<a<400
=> 200<60m -1 < 400
3,35< m < 6,68
m= 4;5;6
+m=4 => a= 4.60 -1 =239
+m=5 => a=5.60 -1 =299
+m=6 => a= 6.60-1=359
Vây a= 239;299;359
Nhận thấy : a + 1 chia hết cho 4; 5 và 6.
BC( 4; 5; 6 ) = { 0; 60; 120; 180; 240; 300; 360; ... }
Vậy \(a\in\left\{240-1;300-1;360-1\right\}\)
Hoặc \(a\in\left\{239;299;359\right\}\)
Bài 1:
Theo đề ra ta có:
$a-2\vdots 3; a-3\vdots 5$
$a-2-2.3\vdots 3; a-3-5\vdots 5$
$\Rightarrow a-8\vdots 3; a-8\vdots 5$
$\Rightarrow a-8=BC(3,5)$
$\Rightarrow a-8\vdots 15$
$\Rightarrow a=15k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 6
$\Rightarrow a-6\vdots 11$
$\Rightarrow 15k+8-6\vdots 11$
$\Rightarrow 15k+2\vdots 11\Rightarrow 4k+2\vdots 11$
$\Rightarrow 4k+2-22\vdots 11\Rightarrow 4k-20\vdots 11$
$\Rightarrow 4(k-5)\vdots 11\Rightarrow k-5\vdots 11$
$\Rightarrow k=11m+5$
Vậy $a=15k+8=15(11m+5)+8=165m+83$ với $m$ tự nhiên.
Vì $a<500\Rightarrow 165m+83<500\Rightarrow m< 2,52$
$\Rightarrow m=0,1,2$
Nếu $m=0$ thì $a=165.0+83=83$
Nếu $m=1$ thì $a=165.1+83=248$
Nếu $m=2$ thì $a=165.2+83=413$
Bài 2:
$a=BC(60,85,90)$
$\Rightarrow a\vdots BCNN(60,85,90)$
$\Rightarrow a\vdots 3060$
Mà $a<1000$ nên $a=0$
a chia 4 dư 3 ; a chia 5 dư 4 ; a chia 6 dư 5 => a + 1 chia hết cho cả 3 ; 4 ; 5
<=> a + 1 \(\in\) BC(3 ; 4 ; 5)
Mà BCNN(3 ; 4 ; 5) = 60 => a + 1 = 60k (k \(\in\) N*)
Nhưng 200 \(\le\) a \(\le\) 400 nên a + 1 \(\in\) {240 ; 300 ; 360}
Vậy a \(\in\) {239 ; 299 ; 359}
\(\left\{{}\begin{matrix}a:3R2\\a:5R4\\a:6R5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-2⋮3\\a-4⋮5\\a-5⋮6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-2+3=a+1⋮3\\a-4+5=a+1⋮5\\a-5+6=a+1⋮6\end{matrix}\right.\\ \Rightarrow a+1\in BC\left(3,5,6\right)=B\left(30\right)=\left\{0;30;60;90;120;...\right\}\\ \Rightarrow a\in\left\{-1;29;59;89;119;...\right\}\)
Mà \(59< a< 90\Rightarrow a=89\)