K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

16 tháng 6 2018

Đặt t= ex , với x [0 ; ln4] => t [1 ;4].

Khi đó f(x) = |t2 – 4t + m| = |g(t)|.

Có g’ (t) = 2t-4 và g’ (t) =0 khi t= 2.

Ta có bảng biến thiên

Từ bảng biến thiên ta thấy 

v2KYZlEdNtpE.png

Chọn D.

4 tháng 6 2017

Chọn B

Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:

Từ bảng biến thiên ta có 

Mặt khác 

Suy ra 

11 tháng 12 2017

Đáp án D

Xét hàm số utLXtnAHAXZg.png.

WVXeUZNSMTh6.png;

3Sq4PZtpXS6W.pngaJxVp1I4jPOj.png

pdAOjpZtd3mu.png

Bảng biến thiên

KsJ8gONRGnYh.png

Do u7LIT07hrkst.png nên 3s5KLaEXd64W.png suy ra FtKIVcspW3Mr.png.

Suy ra jEoo7242PpDN.png.

Nếu VXLD4502NCDy.png thì 9TAGuySWhRVj.png, SNqHqtX6l55p.png

hUnCorl2lwHR.png3MBkHnwPFHwQ.png9iZ9VMgxf0gq.png.

Nếu G522RBPBNWuD.png thì Wfh9fXnx1v2l.png, VhHGWoXclYji.png

bvOGxUgRW9pV.png4MMjwUo8ealS.pnglE7ed3Pn109h.png.

Do đó tqJseeuLC8G9.png hoặc nlXOAhsXYCz8.png, do a nguyên và thuộc đoạn JHMlrDo85yhC.png nên ufkMbtKePCGT.png.

18 tháng 4 2019

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

10 tháng 4 2019

Đạo hàm f'(x) =  m 2 - m + 1 ( x + 1 ) 2 > 0,  ∀ x   ∈   [ 0 ; 1 ]  

Suy ra hàm số f(x)  đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m

Theo bài ta có:

-m2+ m= -2 nên m= -1 hoặc m= 2.

Chọn D.

NV
13 tháng 1 2021

\(f\left(x\right)=e^{sinx}-sinx-1\)

\(\Rightarrow f'\left(x\right)=cosx.e^{sinx}-cosx=cosx\left(e^{sinx}-1\right)\)

\(f'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\pi}{2}\\x=\pi\end{matrix}\right.\)

\(f\left(0\right)=0\) ; \(f\left(\dfrac{\pi}{2}\right)=e-2\) ; \(f\left(\pi\right)=0\)

\(\Rightarrow f\left(x\right)_{min}=0\) ; \(f\left(x\right)_{max}=e-2\)

14 tháng 11 2017

+ Đạo hàm f'(x) =  2 - m x 2 ( x + 1 ) x ( x + 1 )

f'(x) = 0  ⇒ x   =   2 m     ↔   x   =   m 2 4   ∈ [   0 ; 4 ] ,  ∀ m > 1

+ Lập bảng biến thiên, ta kết luận được  

m a x [ 0 ; 4 ]   f ( x )   =   f ( 4 m 2 )   =   m 2   + 4

+ Vậy ta cần có  m 2 + 4   <   3  

↔   m < 5   →   m > 1     m   ∈ ( 1 ; 5 )

Chọn C.

30 tháng 1 2018

Đáp án A