cm :\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
các bạn giúp mk mau lên nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
Lại có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};\frac{1}{4^2}>\frac{1}{4.5};...;\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(=\frac{1}{2}-\frac{1}{101}\)
\(\Rightarrow1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>1-\left(\frac{1}{2}-\frac{1}{101}\right)=1-\frac{1}{2}+\frac{1}{101}\)
\(=\frac{1}{2}+\frac{1}{101}\)
mà \(\frac{1}{2}=\frac{50}{100}>\frac{1}{100}\Rightarrow\frac{1}{2}+\frac{1}{101}>\frac{1}{100}\)
=> đ p c m
1/2+1/3+1/4+...+1/63>1/31+1/31+...+1/31(62 số hạng 1/31)
hay 1/2+1/3+1/4+...+1/63>62 x 1/31
nên 1/2+1/3+1/4+...+1/63>2(dpcm)
1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4*1/8=1/2
1/9+…+1/16>8*1/16=1/2
1/2+1/3+1/4+…+1/16>4*1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
=> 1/2+1/3+…+1/63>2
t i c k nhé !! 5756876876978080
Ta có:
\(\frac{1}{2}=\frac{1}{2}\)
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+...+\frac{1}{8}>4.\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}>4.\frac{1}{2}=2\)
\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
Bạn xét :
1/2 + 1/3 + 1/4 > 1
Thì : 1/5 + 1/6 + 1/7 + 1/8 + ...> 1
Vậy : 1/2 + 1/3 + 1/4 + ... 1/63 > 2
Đặt: \(B=1+\frac{1}{1+2}+\frac{1}{1+2+3}+........+\frac{1}{1+2+3+........+2019}\)
Ta có: \(1+2=\frac{2.3}{2}\); \(1+2+3=\frac{3.4}{2}\); .............. ; \(1+2+3+......+2019=\frac{2019.2020}{2}\)
\(\Rightarrow B=\frac{2}{2}+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+........+\frac{1}{\frac{2019.2020}{2}}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{2019.2020}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{2019.2020}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=2.\left(1-\frac{1}{2020}\right)=2.\frac{2019}{2020}=\frac{2019}{1010}\)
\(\Rightarrow A=\frac{2.2019}{\frac{2019}{1010}}=2.1010=2020\)
ĐẶT \(\frac{1}{1357}=a;\frac{1}{301}=b\)
\(\Leftrightarrow M=a.\left(5+b\right)-\left(2+1-a\right).2b-3ab+6b\)
\(\Leftrightarrow M=5a+ab-4b-2b+2ab-3ab+6b\)
\(\Leftrightarrow M=5a\)
thay vào ta được
\(M=5.\frac{1}{1357}=\frac{5}{1357}\)