Tìm n thỏa mãn C 2 n 1 + C 2 n 3 + C 2 n 5 + C 2 n 7 + . . . + C 2 n 20 - 1 = 2 23
A. n=10
B. n=12
C. n=7
D. n=15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C^n_n+C^{n-1}_n+C^{n-2}_n=37\)
\(\Leftrightarrow1+\dfrac{n!}{\left(n-1\right)!}+\dfrac{n!}{\left(n-2\right)!2!}=37\)
\(\Leftrightarrow1+n+\dfrac{n\left(n-1\right)}{2}=37\)
\(\Rightarrow n=8\)
\(P=\left(2+5x\right)\left(1-\dfrac{x}{2}\right)^8=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{x}{2}\right)^k\right)\)
\(=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)
\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5x\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)
\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\)
Số hạng chứa \(x^3\) trong \(2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\) là \(2C^3_8.\left(-\dfrac{1}{2}\right)^3x^3\)
Số hạng chứa \(x^3\) trong \(5\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\) là \(5C^2_8.\left(-\dfrac{1}{2}\right)^2x^3\)
Vậy số hạng chứa x3 trong P là:\(\left[2.C^3_8\left(-\dfrac{1}{2}\right)^3+5C^2_8\left(-\dfrac{1}{2}\right)^2\right]x^3\)
a) 1 + 2 + 3 + ... + n = 231
=> \(\frac{\left(1+n\right).n}{2}=231\)
=> (1 + n).n = 231.2
=> (1 + n).n = 462 = 21.22
=> n = 21
Vậy n = 21
b) 11 + 12 + ... + n = 176
=> \(\frac{11+n}{2}.\left(\frac{n-11}{1}+1\right)=176\)
=> (11 + n).(n - 10) = 176.2
=> (11 + n).(n - 10) = 352 = 32.11
=> n - 10 = 11; 11 + n = 32
=> n = 21
Vậy n = 21
c) 1 + 3 + 5 + ... + (2n - 1) = 169
\(\frac{\left(2n-1+1\right)}{2}.\left(\frac{2n-1-1}{2}+1\right)=169\)
=> \(\frac{2n}{2}.\left(\frac{2n-2}{2}+1\right)=169\)
=> n.(n - 1 + 1) = 169
=> n2 = 169 = 132
Vậy n = 13