Gọi x 1 , x 2 là 2 nghiệm của phương trình 4 x + 1 - 5 . 2 x + 1 + 4 = 0 . Khi đó giá trị S = x 1 + x 2 là
A.-1
B.0
C.1
D.2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
a) Với m = 1 thay vào phương trình ta có:
\(x^2-4x-1=0\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{cases}}\)
b) Phương trình có: \(\Delta'=\left(m+1\right)^2-\left(-m^4+m^2-1\right)\)
\(=m^4+2m+2\)
\(=m^4-2m^2+1+m^2+2m+1+m^2\)
\(=\left(m^2-1\right)^2+\left(m+1\right)^2+m^2\ge0\)
=> Phương trình có nghiệm với mọi m
c) Áp dụng định lí viet ta có: x1 . x2 = -m^4 + m^2 - 1
=> A = m^4 - m^2 + 6 = \(\left(m^2-\frac{1}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
Dấu "=" xảy ra <=> \(m^2-\frac{1}{2}=0\Leftrightarrow m=\pm\frac{\sqrt{2}}{2}\)
Vậy min A = 23/4 tại \(m=\pm\frac{\sqrt{2}}{2}\)
Vì là trắc nghiệm nên mình làm tắt thôi nkaaa.
Thay `x=1/4` vào từng ý:
a: `0=0 =>` Đúng.
b. `23/4 = 5` => Sai.
Bài 1:
c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)
Suy ra: \(-12x-3=8x-2-6x-8\)
\(\Leftrightarrow-12x-3-2x+10=0\)
\(\Leftrightarrow-14x+7=0\)
\(\Leftrightarrow-14x=-7\)
\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)