K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2022

a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

x-21-13-3
x315-1

b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

x-21-113-13
x3115-11

 

c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x+71-12-2
x-6-8-5-9

 

a: (x-3)(x-2)<0

=>x-2>0 và x-3<0

=>2<x<3

b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)

=>(x+3)(x+4)>=0

=>x+3>=0 hoặc x+4<=0

=>x>=-3 hoặc x<=-4

c: \(\dfrac{x-1}{x-2}\ge0\)

=>x-2>0 hoặc x-1<=0

=>x>2 hoặc x<=1

d: \(\dfrac{x+3}{2-x}>=0\)

=>\(\dfrac{x+3}{x-2}< =0\)

=>x+3>=0 và x-2<0

=>-3<=x<2

2 tháng 4 2020

\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!

2 tháng 4 2020

20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
 

30 tháng 1 2018

      \(\left(x-3\right)\left(4-x\right)>0\)

\(\Rightarrow\)\(\hept{\begin{cases}x-3>0\\4-x>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>3\\x< 4\end{cases}}\)  (vô lí)

hoặc    \(\hept{\begin{cases}x-3< 0\\4-x< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 3\\x>4\end{cases}}\)(vô lí)

Vậy      \(x=\Phi\)

8 tháng 12 2022

a

26 tháng 7 2017

viết kiểu gì khó hiểu quá

26 tháng 7 2017

Ta có : (x - 3)(x - 2) < 0

Nên sảy ra 2 trường hợp : D

Th1 : \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}\Rightarrow}2< x< 3}\)

Th2 : \(\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}\left(loại\right)}}\)

Vậy 2 < x < 3

15 tháng 7 2017

a)\(\left(x2+7\right).\left(x2-49\right)< 0\)

\(\left(x2+7\right).\left(x2-49\right)< 0\) chứng tỏ hai vế \(\left(x2+7\right)\)\(\left(x2-49\right)\) khác dấu nhau .

\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)

\(\left(x2+7\right)\) > \(\left(x2-49\right)\)

Nên ta có:

\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}\left(x+7\right)=0\\\left(x-49\right)=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}x=-7\\x=49\end{matrix}\right.\)

Vậy hai số nguyên đó là -7 và 49 .

Còn phần còn lại bạn làm tương tự nhé banhqua !

15 tháng 12 2021

Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x

Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x

⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0

⇔[x=tx=1−t⇔[x=tx=1−t

⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m

⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1

Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:

−x2+x+1=−x2+3x−x2+x+1=−x2+3x

⇔x=12⇒y=54⇔x=12⇒y=54

Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1