Cho a , b ,c \(\in\)Z , P = a.b.c , biết P < 0 , a > 0 , b > c
Hãy xét dấu của b và c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khi a.b<0 thì
=> TH1 a<0, b>0 a<b
TH2 a>0, b<0, a>b
mà ta có a<b nên a<0, b>0
vậy a mang dấu âm, b mang dấu dương
Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)
Ta có
\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)
\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)
Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)
và \(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)
Nhân (1), (2), (3) với nhau:
\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)
b < c => b, c không thể = 0
P >0, a < 0 => b.c < 0
=> b, c trái dấu (b âm thì c dương, b dương thì c âm)
P < 0 => P là số âm
a > 0 => a là số dương
b > c => dasu của b là +
c là trừ
b là dấu dương
c là dấu âm