Tìm số dư khi chia 5139+3951+12 cho 90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số tự nhiên cần tìm lớn nhất là a(a thuộc N*, 20000<a<30000)
Theo bài ra ta có:
a chia 35; 54; 90 (dư 12)
=>a-12 chia hết cho 35; 54; 90
=>a-12 thuộc BC(35;54;90)
mà BCNN(35;54;90)=1890
=>a-12 thuộc BC(35;54;90)=B(1890)={0;1890;3780;...;20790;...28350;30240;...}
=>a thuộc {12;1902;3792;...;20802;...28362;30252;...}
Vì a lớn nhất và 20000<a<30000
=>a=28362
Còn nếu muốn tìm số nhỏ nất thì bạn chỉ cần thay số lớn nhất thành nhỏ nhất, và thay a thành b, thế là xong, muộn lắm rùi nhưng mình vẫn cố làm để xin lỗi chuyện mình làm sai lúc nãy, bạn thông cảm nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án cần chọn là: A
Vì a chia cho 8 dư 6⇒(a+2)⋮8
a chia cho 12 dư 10 ⇒(a+2)⋮12
Do đó (a+2)∈BC(12;8) mà BCNN(12,8)=24.
Do đó (a+2)⋮24⇒a chia cho 24 dư 22
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
GỌI SỐ TỰ NHIÊN CHIA CHO 7 DƯ 3, CHO 17 DƯ 12, CHO 23 DƯ 7 LÀ a
THEO BÀI RA, TA CÓ: \(a=7q+3=17p+12=23y+7\)( TRONG ĐÓ \(q,p,y\)LÀ THƯƠNG CỦA CÁC PHÉP CHIA)
\(\Rightarrow a+39=7q+42=7\cdot\left(q+6\right)\left(1\right)\)
\(a+39=17p+51=17\cdot\left(p+3\right)\left(2\right)\)
\(a+39=23y+46=23\cdot\left(y+2\right)\left(3\right)\)
TỪ\(\left(1\right),\left(2\right)\&\left(3\right)\Rightarrow a+39\in BC\left(7;17;23\right)\)
TA CÓ: \(7=7;17=17;23=23\)
\(\Rightarrow BCNN\left(7;17;23\right)=7\cdot17\cdot23=2737\)
DO ĐÓ: \(a+39=2737k\left(k\in N\right)\)
\(\Leftrightarrow a=2737k-39\)
\(\Leftrightarrow a=2737\cdot\left(k-1\right)-2698\)
VẬY PHÉP CHIA a CHO 2737 CÓ SỐ DƯ LÀ 2698
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là A
Theo bài ,ta có :
A chia 8 dư 6 => A + 2 chia hết cho 8
A chia 12 dư 12 => A + 2 chia hết cho 12
A chia 15 dư 13 => A + 2 chia hết cho 15
=> A + 2 là bội chung của { 8 ; 12 ; 15 }
Các bội chung của { 8 ; 12 ; 15 } là 120 ; 240 ; 360 ; 480 ; 600 ; ...
A có thể là : 118 ; 238 ; 358 ; 478 ; 598 ; ...
Vì A chia hết cho 23 => A là 598 ( thỏa mãn điều kiện của đề bài )
Vậy số tự nhiên càn tìm là 598
5139 + 3951 + 12 = .....51+ ...39 + 12 = ...102
=> ...102 : 90 dư 12