So sánh:
a) (-13). 5 với 0;
b) 200 với 200. (-3);
c) (-17). 2 với -17;
d) (-11). 8 với -11.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5+5^2+5^3+..+5^{100}\)
\(5A=5+5^2+5^3+..+5^{101}\)
\(A=\frac{5^{101}-1}{4}\)\(SUYRA\) \(A< B\)
\(A=5^0+5+5^2+...+5^{100}.\)
\(\Rightarrow5A=5+5^2+5^3+...+5^{101}\)
\(\Rightarrow5A-A=4A=\left(5+5^2+5^3+...+5^{101}\right)-\left(5^0+5+5^2+...+5^{100}\right)\)
\(=5^{101}-1\)
\(\Rightarrow A=\frac{5^{101}-1}{4}\)
Còn lại tự lm nha bn
\(\dfrac{11}{-13}=-\dfrac{11}{13}=-\dfrac{13}{13}+\dfrac{2}{13}=-1+\dfrac{2}{13}\\ -\dfrac{14}{15}=-\dfrac{15}{15}+\dfrac{1}{15}=-1+\dfrac{1}{15}\)
Ta thấy : \(\dfrac{1}{15}< \dfrac{1}{13}< \dfrac{2}{13}=>-1+\dfrac{1}{15}< -1+\dfrac{2}{13}\)
hay \(\dfrac{11}{-13}>-\dfrac{14}{15}\)
A=1/2+1/22+1/23+...+1/22020+1/22021 > B=1/3+1/4+1/5+13/60
Ta có: A=12+122+123+124+...+122021+122022�=12+122+123+124+...+122021+122022
⇒2A=1+12+122+123+...+122020+122021⇒2�=1+12+122+123+...+122020+122021
⇒2A−A=(1+12+122+123+...+122020+122021)−(12+122+123+124+...+122021+122022)⇒2�-�=(1+12+122+123+...+122020+122021)-(12+122+123+124+...+122021+122022)
⇒A=1−122022<1⇒�=1-122022<1
⇒A<1 (1)⇒�<1 (1)
Lại có: B=13+14+15+1760�=13+14+15+1760
⇒B=1615⇒�=1615
⇒B=1+115>1⇒�=1+115>1
⇒B>1 (2)⇒�>1 (2)
Từ (1)(1) và (2)⇒A<B(2)⇒�<�
Vậy A<B
a) \(\frac{{ - 21}}{{10}}\) < 0
b) \(\frac{{ - 5}}{{ - 2}} = \frac{5}{2} > 0\). Vậy \(\frac{{ - 5}}{{ - 2}} > 0\).
c) \(\frac{{ - 5}}{{ - 2}} = \frac{5}{2} > 0\), mà \(\frac{{ - 21}}{{10}} < 0\)
Vậy \(\frac{{ - 5}}{{ - 2}} > \frac{{ - 21}}{{10}}\).
a: \(-\dfrac{21}{10}< 0\)
b: \(0< -\dfrac{5}{-2}\)
c: \(-\dfrac{21}{10}< 0< \dfrac{-5}{-2}\)
a) Vì \(\dfrac{1}{24}< \dfrac{1}{83}\)
⇒ \(\dfrac{1}{24^9}>\dfrac{1}{83^{13}}\)
a) \(\left(\dfrac{1}{24}\right)^9>\left(\dfrac{1}{27}\right)^9=\dfrac{1}{3^{27}}\)
\(\left(\dfrac{1}{83}\right)^{13}< \left(\dfrac{1}{81}\right)^{13}=\dfrac{1}{3^{52}}\)
Mà \(\dfrac{1}{3^{27}}>\dfrac{1}{3^{52}}\)
\(\Rightarrow\left(\dfrac{1}{24}\right)^9>\left(\dfrac{1}{83}\right)^{13}\)
b) \(3^{300}=\left(3^3\right)^{100}=27^{100}\)
\(5^{199}< 5^{200}=\left(5^2\right)^{100}=25^{100}\)
Mà \(25^{100}< 27^{100}\)
\(\Rightarrow5^{199}< 3^{300}\)
\(\Rightarrow\dfrac{1}{5^{199}}>\dfrac{1}{3^{300}}\)
a: Ta có: \(3^{2020}=3^{2018}\cdot3^2=3^{2018}\cdot9\)
mà 9<10
nên \(3^{2020}< 10\cdot3^{2018}\)
a) Ta có:
\(\dfrac{16}{9}\)=\(\dfrac{48}{27}\) \(\dfrac{24}{13}=\dfrac{48}{26}\)
Vì 27>26
➝\(\dfrac{48}{27}>\dfrac{48}{26}hay\dfrac{16}{9}>\dfrac{24}{13}\)
So sánh:
a) 16/9 và 24/13
Ta có \(\dfrac{16}{9}=\dfrac{208}{117}\) và \(\dfrac{24}{13}=\) \(\dfrac{216}{117}\)
\(\Rightarrow\dfrac{216}{117}>\dfrac{208}{117}\Rightarrow\dfrac{24}{13}>\dfrac{16}{9}\)
b) 27/82 và 26/75
Ta có \(\dfrac{27}{82}\approx0,33\) và \(\dfrac{26}{75}\approx0,35\)
\(\Rightarrow9,35>0,33\Rightarrow\dfrac{26}{75}>\dfrac{27}{82}\)
\(A=1+2+2^2+...+2^{2022}\)
\(\Rightarrow2A=2+2^2+...+2^{2023}\)
\(\Rightarrow2A-A=2^{2023}-1\)
\(\Rightarrow A=2^{2023}-1\)
\(\Rightarrow A< 2^{2023}=2^2.2^{2021}=4.2^{2021}< 5^{2021}\)
\(\Rightarrow A< B\)
a)
\(\begin{array}{l}{( - 3)^2}.{( - 3)^4} = 9.81 = 729\\ {( - 3)^6} = ( - 3).( - 3).( - 3).( - 3).( - 3).( - 3)\\ = 9.9.9 = 729\end{array}\)
Vậy \({( - 3)^2}.{( - 3)^4}\) = \({( - 3)^{6}}\)
b)
\(\begin{array}{l}0,6{}^3:0,{6^2} = 0,216:0,36 = 0,6\end{array}\)
Vậy \(0,6{}^3:0,{6^2}\) = \(0,{6}\)
a) (-13).5 < 0
b) 200 > 200 . (-3)
c) (-17) . 2 < -17
d) (-11) . 8 < -11.