cho M=(x-y)+5 N=(y-z)+7 P=(Y+Z)+2 Q=(x+y)+14 chung minhM+N=Q-P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}\)
AD TC DTSBN, có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}=\frac{x-y+z}{2-5+7}=\frac{x+2y-z}{2+10-7}=\frac{x-y+z}{4}=\frac{x+2y-z}{5}\)
\(\Rightarrow\)\(\frac{x-y+z}{4}=\frac{x+2y-z}{5}\Rightarrow\frac{4}{5}=\frac{x-y+z}{x+2y-z}\)
VẬy...
Bài 11:
+ Ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\left(x,y,z\ne0\right).\)
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\\z=7k\end{matrix}\right.\)
+ Lại có: \(P=\frac{x-y+z}{x+2y-z}.\)
Thay \(x=2k;y=5k\) và \(z=7k\) vào P ta được:
\(P=\frac{2k-5k+7k}{2k+2.5k-7k}\)
\(\Rightarrow P=\frac{2k-5k+7k}{2k+10k-7k}\)
\(\Rightarrow P=\frac{\left(2-5+7\right).k}{\left(2+10-7\right).k}\)
\(\Rightarrow P=\frac{4k}{5k}\)
\(\Rightarrow P=\frac{4}{5}.\)
Vậy \(P=\frac{4}{5}.\)
Chúc bạn học tốt!
1,a/ Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-2\\\dfrac{y}{5}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-10\end{matrix}\right.\)
Vậy ...
b, Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{8}{2}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=4\\\dfrac{y}{5}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=28\\y=20\end{matrix}\right.\)
Vậy ...
2/a, Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{5}=4\\\dfrac{z}{7}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=10\\z=28\end{matrix}\right.\)
Vậy ...
b/ \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\)
\(\Leftrightarrow\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}=\dfrac{2x+y-z}{6+5-8}=\dfrac{12}{3}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{6}=4\\\dfrac{y}{5}=4\\\dfrac{z}{8}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=20\\z=32\end{matrix}\right.\)
Vậy ..
Bài Giải:
Bài 1:
a) Theo đề bài, ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}\)và x+y=-4
Áp dụng tính chất của dãy tỉ số bằng nhau
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=-2\)
Suy ra: x = 2 . (-2) =-4
y = 5 . (-2) =-10
Vậy: x = -4 và y = -10
Mấy câu sau cậu cứ dựa vào bài trên để giải nhé!
Tick cho Phong nhé:>
Yêu nhiều>3
#Phong_419
Ta có : x - 24 = y
=> x - y = 24
Lại có : \(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)
( theo tính chất của dãy tỉ số bằng nhau )
Nên \(\dfrac{x}{7}=6\) => x = 42
\(\dfrac{y}{3}=6\) => y = 18
Vậy x = 42, y = 18
Ta có :\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{y-x}{7-5}=\dfrac{48}{2}=24\)
( theo tính chất dãy tỉ số bằng nhau )
Nên \(\dfrac{x}{5}=24\) => x = 120
\(\dfrac{y}{7}=24\) => y = 168
\(\dfrac{z}{2}=24\) => z = 48
Vậy x = 120, y = 168, z = 48
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
a, Ta có:
\(x-24=y\\ x-y=24\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)
+) \(\dfrac{x}{7}=6\Rightarrow x=6\cdot7=42\)
+) \(\dfrac{y}{3}=6\Rightarrow6\cdot3=18\)
Vậy \(x=42;y=18\)
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{y-z}{7-2}=\dfrac{48}{5}=9,6\)
+) \(\dfrac{x}{5}=9,6\Rightarrow x=9,6\cdot5=48\)
+) \(\dfrac{y}{7}=9,6\Rightarrow y=9,6\cdot7=67,2\)
+) \(\dfrac{z}{2}=9,6\Rightarrow z=9,6\cdot2=19,2\)
Vậy \(x=48;y=67,2;z=19,2\)
\(VT=\dfrac{3}{xy+yz+xz}+\dfrac{2}{x^2+y^2+z^2}\)
\(=\dfrac{8}{4\left(xy+yz+xz\right)}+\dfrac{4}{4\left(xy+yz+xz\right)}+\dfrac{4}{2\left(x^2+y^2+z^2\right)}\)
\(\ge\dfrac{8}{4\cdot\dfrac{\left(x+y+z\right)^2}{3}}+\dfrac{\left(2+2\right)^2}{2\left(x+y+z\right)^2}\)
\(=\dfrac{8}{4\cdot\dfrac{1^2}{3}}+\dfrac{\left(2+2\right)^2}{2\cdot1^2}=14\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)