Cho phương trình 3x – 2y = 5
Hãy cho thêm một phương trình bậc nhất hai ẩn để được một hệ vô nghiệm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3x – 2y = 5 ⇔
Để được một hệ có vô số nghiệm thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc bằng 3/2 và tung độ gốc bằng - 5/2 .
Chẳng hạn: ⇔ 6x – 4y = 10
Khi đó ta có hệ có vô số nghiệm.
Ta có: 3x – 2y = 5 ⇔
Để được một hệ có nghiệm duy nhất thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc khác 3/2 .
Chẳng hạn: ⇔ -x + 2y = 4
Khi đó ta có hệ có một nghiệm duy nhất.
a) Hệ đã cho vô nghiệm bởi vì mỗi nghiệm của hệ là nghiệm chung của hai phương trình, một phương trình vô nghiệm thì hệ không có nghiệm chung.
b) Hệ đã cho có vô số nghiệm.
Đáp án là B
x –2y = 2 ⇒ a = 1; b = -2; c = 2
A. 2x – 2y = 2 ⇒ a' = 2; b' = -2; c = 2
⇒ hpt có 1 nghiệm duy nhất
B. -2x + 4y - 4 = 0 ⇔ -2x + 4y = 4 ⇒ a' = -2; b' = 4; c' = 4
⇒ hpt vô nghiệm
C. 2y = -2x – 4 ⇔ 2x + 2y = -4 ⇒ a' = 2; b'= 2; c' = -4
⇒ hpt có 1 nghiệm duy nhất
D. y = 2x – 4 ⇔ -2x + y = -4 ⇒ a' = -2; b' = 1; c' = -4
⇒ hpt có vô số nghiệm
Hệ đã cho vô nghiệm bởi vì mỗi nghiệm của hệ là nghiệm chung của hai phương trình, một phương trình vô nghiệm thì hệ không có nghiệm chung.
Cho phương trình 3x-2y=5
Hãy cho thêm 1 phương trình bậc nhất 2 ẩn để được 1 hệ có nghiệm duy nhất
(9)
Ta có: 3x – 2y = 5 ⇔
Để được một hệ vô nghiệm thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc bằng 3/2 và tung độ gốc khác - 5/2 .
Chẳng hạn: ⇔ 3x – 2y = 3
Khi đó ta có hệ vô nghiệm.