Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài tại A (R > R’). Vẽ các đường kính AOB, AO’C. Dây DE của đường tròn (O) vuông góc với BC tại trung điểm K của BC. Gọi I là giao điểm của EC và đường tròn (O’). Chứng minh rằng ba điểm D, A, I thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: góc ABC = 90 độ ( góc nt chắn nửa đt )
góc ABD = 90 độ ( góc nt chắn nửa đt )
=> CBD = góc ABC + góc ABD = 180 độ
=> ba điểm C,B,D thẳng hàng
hình bẹn tự vẽ hén:
giải:
Có \(\widehat{ABC}=90^o\) ( vì góc ABC chắn nửa đường tròn đường kính AC)
\(\widehat{ABD}=90^o\) ( vì góc ABD chắn nửa đường tròn đường kính AD)
\(\Rightarrow\widehat{ABC}+\widehat{ABD}=180^o\)
Vậy ba điểm C; B ; D thẳng hàng.
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (o),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').
Hướng dẫn làm bài:
Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB
Xét hai tam giác vuông OPB và O’AP, ta có:
ˆA=ˆB=900A^=B^=900
ˆP1P1^ chung
Vậy ΔOBP ~ ∆ O’AP
⇒rR=PO′PO=PAPB=48=12⇒R=2r⇒rR=PO′PO=PAPB=48=12⇒R=2r
Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)
Áp dụng định lí Py-ta-go trong tam giác vuông O’AP
O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2
Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)
Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB
Xét hai tam giác vuông OPB và O’AP, ta có:
ˆA=ˆB=900A^=B^=900
ˆP1P1^ chung
Vậy ΔOBP ~ ∆ O’AP
⇒rR=PO′PO=PAPB=48=12⇒R=2r⇒rR=PO′PO=PAPB=48=12⇒R=2r
Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)
Áp dụng định lí Py-ta-go trong tam giác vuông O’AP
O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2
Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)
c: góc BDC=1/2*góc BOC=60 độ
BD//AC
=>góc DCx=góc BDC=60 độ(so le trong)
=>góc ODC=góc OCD=90-60=30 độ
góc BDO=góc CDO=30 độ
=>góc BOD=góc COD=120 độ
=>ΔBOD=ΔCOD
=>BD=CD
=>D nằm trên trung trực của BC
=>A,O,D thẳng hàng
a) Áp dụng định lý Py-ta-go, ta tính được AB = 4(cm)
(câu a tự trình bày nhé)
b) Gọi H= OA _|_ BC . khi đó H là trung điểm BC
=> HB = HC
Xét 2 tam giác vuông AHB và AHC:
AH chung; HB = HC (cmt)
=> tam giác AHB = tam giác AHC (2 cạnh góc vuông)
=> ABH^ = ACH^
Mặt khác, OBC^ = OCB^ (tam giác BOC cân tại O, OB=R=OC)
Mà OBC^ + ABH^ = 90o (Ax là tiếp tuyến)
=> OCB^ + ACH^ = 90o => ACO^ = 90o => AC là tiếp tuyến (O)
c) Xét tam giác BCD:
CD là đường kính (gt) => O là trung điểm CD
Mà H là trung điểm BC (cmt)
=> OH là đường trung bình của tam giác BCD
=> OH // BD hay OA // BD
Δ
a: Xét ΔOAM vuông tại A có cos AOM=OA/OM=1/2
nên góc AOM=60 độ
=>góc AMO=30 độ
Xét ΔOAC có OA=OC và góc AOM=60 độ
nên ΔAOC đều
mà AH là đường cao
nên H là trung điểm của OC
ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
Xét tứ giác OACB có
H là trung điểm chung của OC và BA
OA=OB
Do đó: OACB là hình thoi
b: góc DAM=180 độ-góc HAM=180-60=120 độ
góc DAO=180-60=120 độ
góc OAM=360-120-120=120 độ
=>góc DAM=góc DAO=góc OAM
=>ΔODM đều
=>MO=MD
=>M nằm trên trung trực của OD
mà NK là trung trực của OD
nên M,N,K thẳng hàng
Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại D
Suy ra: AD ⊥ BD
Tứ giác BDCE là hình thoi nên EC // BD
Suy ra: EC ⊥ AD (1)
Tam giác AIC nội tiếp trong đường tròn (O’) có AC là đường kính nên vuông tại I
Suy ra: AI ⊥ CE (2)
Từ (1) và (2) suy ra AD trùng với AI
Vậy D, A, I thẳng hàng.