Minh họa hình học tập nghiệm của mỗi hệ phương trình sau: 3 x + 2 y = 13 2 x - y = - 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Ta có: x + y = 1 ⇔ y = -x + 1
Cho x = 0 thì y = 1 ⇒ (0; 1)
Cho y = 0 thì x = 1 ⇒ (1; 0)
*Ta có: 3x + 0y = 12 ⇔ x = 4
Hai đường thẳng cắt nhau tại P(4; -3) nên nghiệm của hệ phương trình là (x; y) = (4; -3)
Đồ thị:
*Ta có: 2x + 3y = 7
Cho x = 0 thì y = 7/3 ⇒ (0; 7/3 )
Cho y = 0 thì x = 7/2 ⇒ (7/2 ; 0)
*Ta có: x – y = 6 ⇔ y = x – 6
Cho x = 0 thì y = -6 ⇒ (0; -6)
Cho y = 0 thì x = 6 ⇒ (6; 0)
Hai đường thẳng cắt nhau tại M(5; -1) nên nghiệm của hệ phương trình là (x; y) = (5; -1)
Đồ thị:
*Ta có: x + 2y = 6
Cho x = 0 thì y = 3 ⇒ (0; 3)
Cho y = 0 thì x = 6 ⇒ (6; 0)
*Ta có: 0x – 5y = 10 ⇔ y = -2
Hai đường thẳng cắt nhau tại Q(10; -2) nên nghiệm của hệ phương trình là (x; y) = (10; -2)
Đồ thị:
Ta có:
*Vẽ đường thẳng x = -2 song song với trục tung
*Vẽ đường thẳng y = 5x + 9
Cho x = 0 thì y = 9 ⇒ (0; 9)
Cho y = 0 thì x = - 9/5 = -1,8
Hai đường thẳng y = 5x + 9 và x = -2 cắt nhau tại A(-2; -1). Vậy hệ phương trình có một nghiệm duy nhất (x; y) = (-2; -1).
Bước 1: Mở trang Geoebra
Bước 2: Nhập bất phương trình \(x - 2y + 3 \le 0\) vào ô
Và bấm enter, màn hình sẽ hiển thị như hình dưới. Miền nghiệm của bất phương trình \(x - 2y + 3 \le 0\) là miền được tô màu. Đường nét liền biểu thị miền nghiệm chứa các điểm nằm trên đường thẳng \(x - 2y + 3 = 0\).
Bước 3: Tiếp tục nhập từng bất phương trình còn lại như sau:
x+3y>-2; \(x \le 0\)(x<=0). Khi đó màn hình sẽ hiển thị như hình dưới.
Miền nghiệm của hệ là miền được tô màu đậm nhất. Đường nét đứt biểu thị miền nghiệm không chứa các điểm nằm trên đường thẳng \(x + 3y = - 2\). Đường nét liền \(x = 0\) (trục Oy) biểu thị các điểm nằm trên trục Oy cũng thuộc miền nghiệm.
x = 2 2 x - y = 3
Đường thẳng (d): x = 2 song song với trục tung.
Đường thẳng (d’): 2x – y = 3 không song song với trục tung
⇒ (d) cắt (d’)
⇒ Hệ có nghiệm duy nhất.
Vẽ (d): x = 2 là đường thẳng đi qua (2 ; 0) và song song với trục tung.
Vẽ (d’): 2x - y = 3
- Cho x = 0 ⇒ y = -3 được điểm (0; -3).
- Cho y = 0 ⇒ x = 1,5 được điểm (1,5 ; 0).
Ta thấy hai đường thẳng (d) và (d’) cắt nhau tại A(2; 1).
Vậy hệ phương trình có nghiệm (2; 1).
Biểu diễn hình học tập nghiệm của bất phương trình bậc nhất hai ẩn sau: 3(x - 1) + 4(y - 2) < 5x - 3
3(x – 1) + 4(y – 2) < 5x – 3
⇔ 3x – 3 + 4y – 8 < 5x – 3
⇔ -2x + 4y < 8
⇔ x – 2y > –4 ( chia cả hai vế cho -2 < 0) (2)
Biểu diễn tập nghiệm trên mặt phẳng tọa độ:
– Vẽ đường thẳng x – 2y = –4.
– Thay tọa độ (0; 0) vào (2) ta được: 0 + 0 > –4 đúng
⇒ (0; 0) là một nghiệm của bất phương trình.
Vậy miền nghiệm của bất phương trình là nửa mặt phẳng chứa gốc tọa độ không kể bờ với bờ là đường thẳng x – 2y = –4
Đường thẳng (d): x = 2 song song với trục tung.
Đường thẳng (d’): 2x – y = 3 không song song với trục tung
⇒ (d) cắt (d’)
⇒ Hệ có nghiệm duy nhất.
Vẽ (d): x = 2 là đường thẳng đi qua (2 ; 0) và song song với trục tung.
Vẽ (d’): 2x - y = 3
- Cho x = 0 ⇒ y = -3 được điểm (0; -3).
- Cho y = 0 ⇒ x = 1,5 được điểm (1,5 ; 0).
Ta thấy hai đường thẳng (d) và (d’) cắt nhau tại A(2; 1).
Vậy hệ phương trình có nghiệm (2; 1).
Đường thẳng (d): x + 3y = 2 không song song với trục hoành
Đường thẳng (d’): 2y = 4 hay y = 2 song song với trục hoành
⇒ (d) cắt (d’)
⇒ Hệ phương trình có nghiệm duy nhất.
Vẽ (d1): x + 3y = 2
- Cho y = 0 ⇒ x = 2 được điểm (2; 0).
- Cho x = 0 ⇒ y = được điểm (0; ).
Vẽ (d2): y = 2 là đường thẳng đi qua (0; 2) và song song với trục hoành.
Ta thấy hai đường thẳng (d) và (d’) cắt nhau tại A(-4; 2).
Vậy hệ phương trình có nghiệm (-4; 2).
*Ta có: 3x + 2y = 13
Cho x = 0 thì y = 13/2 ⇒ (0; 13/2 )
Cho y = 0 thì x = 13/3 ⇒ (13/3 ; 0)
*Ta có: 2x – y = -3 ⇔ y = 2x + 3
Cho x = 0 thì y = 3 ⇒ (0; 3)
Cho y = 0 thì x = - 3/2 ⇒ (- 3/2 ; 0)
Hai đường thẳng cắt nhau tại N(1; 5) nên nghiệm của hệ phương trình là (x; y) = (1; 5).
Đồ thị: