K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

Đáp án B.

Suy ra vecto chỉ phương của giao tuyến  ∆ m  

 cùng phương với vecto

Vì vecto u ' →  không phụ thuộc vào m nên các giao tuyến  là song song với nhau.

28 tháng 11 2023

1: Thay x=1 và y=-1 vào (d), ta được:

\(1\left(m-2\right)+m+1=-1\)

=>2m-1=-1

=>m=0

Khi m=0 thì (d): \(y=\left(0-2\right)x+0+1=-2x+1\)

2: Để (d)//(d') thì \(\left\{{}\begin{matrix}m-2=-3\\m+1< >1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m< >0\end{matrix}\right.\)

=>m=-1

3:

(d): y=(m-2)x+m+1

=>(m-2)x-y+m+1=0

Khoảng cách từ O đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(-1\right)+m+1\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}\)

Để d(O;(d))=1 thì \(\dfrac{\left|m+1\right|}{\sqrt{\left(m-2\right)^2+1}}=1\)

=>\(\sqrt{\left(m-2\right)^2+1}=\sqrt{\left(m+1\right)^2}\)

=>\(\left(m-2\right)^2+1=\left(m+1\right)^2\)

=>\(m^2-4m+4+1=m^2+2m+1\)

=>-4m+5=2m+1

=>-6m=-4

=>m=2/3(nhận)

1: Thay x=1 và y=1 vào (d), ta được:

2m-1=-1

hay m=0

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

23 tháng 11 2023

loading...

loading...

loading...

h: Khi m=3 thì \(y=\left(3-2\right)x+3+1=x+4\)

Gọi \(\alpha\) là góc tạo bởi đồ thị hàm số y=x+4 với trục Ox

\(tan\alpha=a=1\)

=>\(\alpha=45^0\)

y=x+4

=>x-y+4=0

Khoảng cách từ O(0;0) đến đường thẳng x-y+4=0 là:

\(\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+4\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)

 

23 tháng 11 2023

a: Để (1) là hàm số bậc nhất thì \(m-2\ne0\)

=>\(m\ne2\)

b: Để (1) đồng biến thì m-2>0

=>m>2

c: Khi m=1 thì \(y=\left(1-2\right)x+1+1=-x+2\)

loading...

d: Thay x=2 và y=1 vào (1), ta được:

\(2\left(m-2\right)+m+1=1\)

=>2m-4+m=0

=>3m-4=0

=>3m=4

=>\(m=\dfrac{4}{3}\)

e: Để (1)//y=3x+2 thì \(\left\{{}\begin{matrix}m-2=3\\m+1< >2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=3\\m< >1\end{matrix}\right.\)

=>m=3

f: Để (1) tạo với trục Ox một góc tù thì m-2<0

=>m<2

g: Thay x=0 vào y=5x+6, ta được:

\(y=5\cdot0+6=6\)

Thay x=0 và y=6 vào (1), ta được:

\(0\left(m-2\right)+m+1=6\)

=>m+1=6

=>m=5

4 tháng 12 2018

a, (1) là hàm số bậc nhất khi \(\dfrac{m-1}{m+1}\ne0\Leftrightarrow m\ne\pm1\)

b, (1) là hàm số nghịch biến khi \(\dfrac{m-1}{m+1}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-1>0\\m+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m-1< 0\\m+1>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\\\left\{{}\begin{matrix}m< 1\\m>-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}1< m< -1\left(L\right)\\-1< m< 1\left(TM\right)\end{matrix}\right.\)

c, (1) đi qua A(1;2) \(\Rightarrow x=1,y=2\)thay vào (1) ta có: \(\dfrac{m-1}{m+1}+m+2=2\)\(\Leftrightarrow\dfrac{m-1}{m+1}+m=0\Leftrightarrow\dfrac{m-1+m^2+m}{m+1}=0\)\(\Leftrightarrow\dfrac{m^2+2m-1}{m+1}=0\)\(\Leftrightarrow m^2+2m-1=0\Leftrightarrow\left[{}\begin{matrix}m=1-\sqrt{2}\\m=-1-\sqrt{2}\end{matrix}\right.\)(cái này là mình ấn máy tính ra nhé)

d, (1) song song với y = 2x - 1 \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-1}{m+1}=2\\m+2\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-1=2m+2\\m\ne-3\end{matrix}\right.\Leftrightarrow m=-3\left(L\right)\)

Vậy không có giá trị m phù hợp

4 tháng 3 2021

a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn