K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

LÊU LÊU CÒN LÂU MỚI TRẢ LỜI 

16 tháng 11 2021

Đáp án 1+1=2

12344567+65=12344632

1C

2B

3C

4D

5C

6A

7:

\(10dm^22cm^2=1002cm^2\)

\(10000cm^2=1m^2\)

1954cm2=19dm254cm2

20dm210cm2=2010cm2

23 tháng 11 2019

65 - 5 = 60     65 - 60 = 5     65 - 65 = 0

70 - 30 = 40     94 - 3 = 91     33 - 30 = 3

21 - 1 = 20     21 - 20 = 1     32 - 10 = 22

9 tháng 12 2021

65 - 5 = 60       65 - 60 = 5       65 - 65 = 0

70 - 30 = 40       94 - 3 = 91       33 - 30 = 3

21 - 1 = 20       21 - 20 = 1       32 - 10 = 22

Toán lớp 1 không có cái này đâu !!!

14 tháng 3 2019

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}-1-\frac{1}{2}-...-\frac{1}{1001}\)

\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2002}\)

Câu 1 Mã: 78331Giải bất phương trình 2x+1x+2≤12x+1x+2≤1−2≤x≤−1−2≤x≤−1−2≤x<1−2≤x<1−2<x≤1−2<x≤1Vô nghiệmCâu 2 Mã: 78319Bất phương trình (3x+1)(6-5x)(3x-7)<0, tập nghiệm của bất phương trình là:S={x |−13<x<65−13<x<65}S={x| x>73x>73 }S={x| −13≤x≤65−13≤x≤65 hoặc x>73x>73 }S={x| −13<x<65−13<x<65 hoặc x>73x>73 }Câu 3 Mã: 78314Tập nghiệm của bất phương trình tích (x+3)(x-7)S={x\-3 < x...
Đọc tiếp

Câu 1 Mã: 78331

Giải bất phương trình 2x+1x+2≤12x+1x+2≤1

−2≤x≤−1−2≤x≤−1

−2≤x<1−2≤x<1

−2<x≤1−2<x≤1

Vô nghiệm

Câu 2 Mã: 78319

Bất phương trình (3x+1)(6-5x)(3x-7)<0, tập nghiệm của bất phương trình là:

S={x |−13<x<65−13<x<65}

S={x| x>73x>73 }

S={x| −13≤x≤65−13≤x≤65 hoặc x>73x>73 }

S={x| −13<x<65−13<x<65 hoặc x>73x>73 }

Câu 3 Mã: 78314

Tập nghiệm của bất phương trình tích (x+3)(x-7)

S={x\-3 < x hoặc x < 7}

S={x\-3 < x < 7}

S={x\-3 > x > 7}

S={-3;7}

Câu 4 Mã: 78328

Giải bất phương trình: 3xx−3>3x−1x−33xx−3>3x−1x−3

x>−3x>−3

x≥−3x≥−3

x>3x>3

x≥3x≥3

Câu 5 Mã: 78330

Giải bất phương trình: 1x+4≤1x−21x+4≤1x−2

x≥2x≥2

x≤−4x≤−4

x≥2x≥2 hoặc x≤−4x≤−4

x≥2x≥2 vàx≤−4x≤−4

Câu 6 Mã: 78316

Bất phương trình (2x-3)(x22+1)≤0≤0. Tập nghiệm của bất phương trình là:

S={x\x≤32≤32}

S={x\x≥32≥32}

S={x\x<32<32}

Đáp án khác

Câu 7 Mã: 78332

Số nghiệm nguyên thỏa mãn bất phương trình (x+5)(7−2x)>0(x+5)(7−2x)>0

8

7

9

10

Câu 8 Mã: 78321

Tìm x sao cho (x-2)(x-5)>0

x>5 và x<2

x>2

x>5 hoặc x<2

x>5

Câu 9 Mã: 78327

Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình: x−3x+5+x+5x−3<2x−3x+5+x+5x−3<2

4

5

3

6

Câu 10 Mã: 78315

Cho bất phương trình -2x22+11x-15>0. Giá trị  x nguyên thỏa mãn bất phương trình là:

x=3

x=2

x=-2

không có giá trị x nào thỏa mãn

Câu 11 Mã: 78318

Cho bất phương trình: (2x+3)(x+1)(3x+5)≥≥ 0, tập nghiệm của bất phương trình là:

S={x | −53≤x≤−32−53≤x≤−32}

S={x | x≥−1x≥−1}

S={x| −53≤x≤−32−53≤x≤−32 hoặc x≥−1x≥−1}

S={x| −53<x<−32−53<x<−32 hoặc x>−1x>−1}

Câu 12 Mã: 78322

Tìm x sao cho x+2x−5<0x+2x−5<0

−2<x<4−2<x<4

−2<x<5−2<x<5

x<5x<5

x>−2x>−2

Câu 13 Mã: 78326

Giải bất phương trình: 4x+32x+1<24x+32x+1<2

x=−12x=−12

x≠−12x≠−12

x>−12x>−12

x<−12x<−12

Câu 14 Mã: 78313

Tập nghiệm của bất phương trình (x-1)(x+2)>0 là:

S={x/x<1 hoặc x>-2}

S={x/x<-2 hoặc x>1}

S={x/x>1 hoặc x<-2}

S={x/x>-2 hoặc x<1}

Câu 15 Mã: 78320

Bất phương trình (2x+1)(x2−4)>0(2x+1)(x2−4)>0  có tập nghiệm là:

S={x| -2 < x < −12−12 hoặc x>2}

S={x | -2 < x < −12−12 hoặc x≥≥ 2}

S={x | -2≤≤ x < −12−12 hoặc x>2}

S={x | -2 < x < −12−12 hoặc x=2}

Câu 16 Mã: 78329

Giải bất phương trình sau: 3x−4x+2≥03x−4x+2≥0

2<x<122<x<12

−12≤x≤−2−12≤x≤−2

x≤−2x≤−2

2≤x≤122≤x≤12

Câu 17 Mã: 78317

Cho bất phương trình:x2−4x+4≤0x2−4x+4≤0 , tập nghiệm của bất phương trình là:

S={x\x≤≤ 2}

S={2}

S={x\x< 2}

Đáp án khác

Câu 18 Mã: 78325

Tìm nghiệm nguyên dương của bất phương trình:

x2−2x−4(x+1)(x−3)>1x2−2x−4(x+1)(x−3)>1  (1)

x∈{1}x∈{1}

x∈{2}x∈{2}

x∈{1;2}x∈{1;2}

Vô nghiệm

Câu 19 Mã: 78324

Giải bất phương trình: (x−4)(9−x)≥0(x−4)(9−x)≥0

x≥4x≥4

x<9x<9

4≤x≤94≤x≤9

Vô nghiệm

Câu 20 Mã: 78323

Bất phương trình x2−2x+1<9x2−2x+1<9

−2<x<4−2<x<4

−2≤x<4−2≤x<4

−2<x<6−2<x<6

−2<x≤6

0
11 tháng 3 2021

\(\dfrac{x+1}{65}+\dfrac{x+3}{63}\) = \(\dfrac{x+5}{61}\) + \(\dfrac{x+7}{59}\)

<=> \(\dfrac{x+1}{65}+1+\dfrac{x+3}{63}+1\) = \(\dfrac{x+5}{61}\) + 1 + \(\dfrac{x+7}{59}\) + 1

<=> \(\dfrac{x+66}{65}+\dfrac{x+66}{63}\) = \(\dfrac{x+66}{61}\) + \(\dfrac{x+66}{59}\)

<=> \(\dfrac{x+66}{65}+\dfrac{x+66}{63}\) - \(\dfrac{x+66}{61}\) - \(\dfrac{x+66}{59}\) = 0

<=> (x + 66) . (\(\dfrac{1}{65}+\dfrac{1}{63}+\dfrac{1}{61}+\dfrac{1}{59}\)) = 0

<=> x + 66 = 0

<=> x = -66

11 tháng 3 2021

hình như bn sai đề đúng ko

2 tháng 9 2017

\(\sqrt[3]{1+\sqrt{65}}-\sqrt[3]{\sqrt{65}-1}=\sqrt[3]{1+\sqrt{65}}+\sqrt[3]{1-\sqrt{65}}\).

Đặt \(a=\sqrt[3]{1+\sqrt{65}}\)\(b=\sqrt[3]{1-\sqrt{65}}\). Ta có: \(\hept{\begin{cases}a^3+b^3=2\\ab=-4\end{cases}}\)Suy ra:

\(\left(a+b\right)^3=2-12\left(a+b\right)\Leftrightarrow\left(a+b\right)^3+12\left(a+b\right)-2=0\Leftrightarrow a+b=...\)(Giải pt bậc 3 bằng máy tính)

27 tháng 12 2023

651<531+631+731++202331<40

165<153+163<153+163+173+…+120233<153+163+173+…+120233+…+120233651<531+631<531+631+731++202331<531+631+731++202331++202331

165<153+163<153+163+173<153+163+173+…+120233651<531+631<531+631+731<531+631+731++202331

Chúng ta có thể thấy rằng:

173+…+120233<165×(20233−73+1)731++202331<651×(2023373+1)

173+…+120233<165×20161731++202331<651×20161

173+…+120233<165×311731++202331<651×311

173+…+120233<31165731++202331<65311

Từ đó, chúng ta có thể kết luận rằng:

165<153+163+173+…+120233<31165651<531+631+731++202331<65311

31165≈4.7846<40653114.7846<40

=) đpcm