K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2016

 

x^5+x^4+1

=x5+x4+x3+x2+x+1-x3-x2-x

=x3.(x2+x+1)+(x2+x+1)-x.(x2+x+1)

tự xử tiếp

 

21 tháng 1 2016

Minh Triều?????

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$

$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$

$=(x^2+x+1)(x^5-x^4+x^3-x+1)$

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

c.

$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$

$=(x^4+1)^2-(x^2)^2$

$=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$

$=(x^4-x^2+1)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

d.

$x^3-5x+8-4=x^3-5x+4$

$=x^3-x^2+x^2-x-(4x-4)$

$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$

e.

$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$

$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$

$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^2+x)+1]$

$=(x^2+x+1)(x^3-x+1)$

 

 

29 tháng 11 2019

11 tháng 7 2023

b) \(25-x^2+14xy-49y^2\)

\(=25-\left(x^2-14xy+49y^2\right)\)

\(=25-\left[x^2-2\cdot7y\cdot x+\left(7y\right)^2\right]\)

\(=25-\left(x-7y\right)^2\)

\(=5^2-\left(x-7y\right)^2\)

\(=\left[5-\left(x-7y\right)\right]\left[5+\left(x-7y\right)\right]\)

\(=\left(5-x+7y\right)\left(5+x-7y\right)\)

c) \(x^5+x^4+1\)

\(=x^5+x^4+1+x^3-x^3\)

\(=\left(x^5+x^4+x^3\right)+\left(1-x^3\right)\)

\(=x^3\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x^3+\left(1-x\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^3+1-x\right)\)

b: 25-x^2+14xy-49y^2

=25-(x-7y)^2

=(5-x+7y)(5+x-7y)

c: =x^5+x^4+x^3+1-x^3

=x^3(x^2+x+1)+(1-x)(x^2+x+1)

=(x^2+x+1)(x^3+1-x)

a: \(x^4+4=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b: \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

c: \(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4-x^2+1\right)\cdot\left(x^4+x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)

 

26 tháng 8 2021

a)\(x^4+4\\ =\left(x^2\right)^2+4x^2+4-4x^2\\ =\left[\left(x^2\right)^2+4x^2+4\right]-\left(2x\right)^2\\ =\left(x^2+2\right)^2-\left(2x\right)^2\\ =\left(x^2+2+2x\right)\left(x^2+2-2x\right)\)

 

7 tháng 8 2023

a) \(x^4+8x+63\)

\(=x^4+4x^3+9x^2-4x^3-16x^2-36x+7x^2+28x+63\)

\(=x^2\left(x^2+4x+9\right)-4x\left(x^2+4x+9\right)+7\left(x^2+4x+9\right)\)

\(=\left(x^2+4x+9\right)\left(x^2-4x+7\right)\)

7 tháng 8 2023

c) \(\left(x^2+2x+7\right)+\left(x^2-2x+4\right)\left(x^2+2x+3\right)\left(1\right)\)

Ta có : \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Rightarrow x^2+2x+4=\dfrac{x^3-8}{x-2}\)

\(\left(1\right)\Rightarrow\left[\left(\dfrac{x^3-8}{x-2}+3\right)\right]+\left(x^2-2x+4\right)\left[\left(\dfrac{x^3-8}{x-2}-1\right)\right]\)

\(=\left[\left(\dfrac{x^3-3x-14}{x-2}\right)\right]+\left(x^2-2x+4\right)\left[\left(\dfrac{x^3-2x-5}{x-2}\right)\right]\)

\(=\dfrac{1}{x-2}\left[x^3-3x-14+\left(x^2-2x+4\right)\left(x^3-2x-5\right)\right]\)

b: \(\left(x^2+4\right)^2-16x^2\)

\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)^2\cdot\left(x+2\right)^2\)

c: \(x^5-x^4+x^3-x^2\)

\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)

\(=x^2\left(x-1\right)\left(x^2+1\right)\)

AH
Akai Haruma
Giáo viên
18 tháng 8 2021

Lời giải:

a. Bạn xem lại đề

b. \((x^2+4)^2-16x^2=(x^2+4)^2-(4x)^2=(x^2+4-4x)(x^2+4+4x)\)

\(=(x-2)^2(x+2)^2\)

c.

\(x^5-x^4+x^3-x^2=x^4(x-1)+x^2(x-1)=(x^4+x^2)(x-1)\)

\(=x^2(x^2+1)(x-1)\)

27 tháng 10 2023

a,

\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)

Thay $x=\dfrac12$ vào $A$, ta được:

\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)

Vậy $A=\dfrac94$ khi $x=\dfrac12$.

b,

\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)

Thay $x=1$ vào $B$, ta được:

\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)

Vậy $B=0$ khi $x=1$.

$Toru$

15 tháng 12 2023

x⁴ - 2x³ + 2x - 1

= (x⁴ - 1) - (2x³ - 2x)

= (x² - 1)(x² + 1) - 2x(x² - 1)

= (x² - 1)(x² + 1 - 2x)

= (x - 1)(x + 1)(x² - 2x + 1)

= (x - 1)(x + 1)(x - 1)²

= (x - 1)³(x + 1)

16 tháng 7 2018

x 8   +   x 4   +   1     =   x 8   +   2 x 4     +   1   –   x 4       =   ( x 8   +   2 x 4     +   1 )   –   x 4       =   [ ( x 4 ) 2   +   2 . x 4   . 1   +   12 ]   –   x 4     =   ( x 4   +   1 ) 2   –   ( x 2 ) 2     =   ( x 4   +   1   –   x 2 ) ( x 4   +   1   +   x 2 )     =   ( x 4   –   x 2   +   1 ) ( x 4   +   2 x 2   –   x 2   +   1 )     =   ( x 4   –   x 2   +   1 ) [ ( ( x 2 ) 2   +   2 . 1 . x 2   +   1 )   –   x 2 ] =   ( x 4   –   x 2   +   1 ) [ ( x 2   +   1 ) 2   –   x 2 ]     =   ( x 4   –   x 2   +   1 ) ( x 2   +   1   –   x ) ( x 2   +   1   +   x )     =   ( x 4   –   x 2   +   1 ) ( x 2   –   x   +   1 ) ( x 2   +   x   +   1 )

Đáp án cần chọn là: C