Giúp mình với ạ !
Tìm hai số a và b biết a + b = 3. ( a - b ) = 2 .\(\frac{a}{b}\)
mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
1) a + b = - 12 và ab = 20
a; b là nghiệm của phương trình: \(X^2-\left(-12\right)X+20=0\)
hay \(X^2+12X+20=0\)
Giải delta tìm được nghiệm: \(X=-2\) hoặc \(X=-10\)
Vậy hai số ( a; b ) = ( -2; -10) hoặc ( a; b ) = ( -10 ; -2)
Các bài còn lại đưa về tổng và tích rồi làm như câu 1.
a) \(\hept{\begin{cases}a+b=-12\\a.b=20\end{cases}\Leftrightarrow\hept{\begin{cases}a=-b-12\\\left(-b-12\right).b=20\end{cases}}}\)
\(\hept{\begin{cases}a=-b-12\\b^2+12b+20=0\end{cases}\Rightarrow\hept{\begin{cases}b=-2;a=-10\\b=-10;a=-2\end{cases}}}\)
b) \(\hept{\begin{cases}a^2+b^2=25\\ab=24\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+b^2=25\\2ab=48\end{cases}}}\)
=> \(a^2+b^2-2ab=-23\)\(\Leftrightarrow\left(a-b\right)^2=-23\)(vô lý)
=> Hệ vô nghiệm
2 ý còn lại tương tự nha bn ơi
var tam,a,b,i:integer;
begin
write('a = ');readln(a);
write('b = ');readln(b);
if a < b then
begin
tam:=a;
a:=b;
b:=tam;
end;
for i:=a to b do
if sqrt(i) = trunc(sqrt(i)) then write(i:10);
readln;
End.
Có: \(1=\left(a+b\right)^2\le\left(a^2+b^2\right)\left(1+1\right)=2\left(a^2+b^2\right)\)
Theo bđt Bunhiacopxki có: \(\left(\text{ax}+by\right)\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
Dấu '=' xảy ra khi ay=bx
\(\Rightarrow\left(a^2+b^2\right)\ge\frac{1}{2}\Rightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\)
Dấu '=' xảy ra khi a=b=1/2
Khi đó : \(P=1:\frac{1}{4}+40.\frac{1}{8}=9\)
một cách khác :))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(a^4+b^4=\frac{a^4}{1}+\frac{b^4}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}\)(1)
Tiếp tục áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)(2)
Từ (1) và (2) => \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\)(3)
Theo bất đẳng thức AM-GM ta có \(ab\le\left(\frac{a+b}{2}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)=> \(\frac{1}{ab}\ge4\)(4)
Từ (3) và (4) => \(P=\frac{1}{ab}\cdot40\left(a^4+b^4\right)\ge4\cdot40\cdot\frac{1}{8}=20\)
Đẳng thức xảy ra <=> a = b = 1/2
Vậy MinP = 20
Đường ....... sai rồi :v
Áp dụng bđt Cauchy - Schwarz dạng engel (full name nhé) , ta có
\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=\frac{9}{3+a+b+c}\ge\frac{9}{3+3}=\frac{3}{2}\)
Đẳng thức xảy ra <=> \(a=b=c=1\)
a+b=3a-3b
4b=2a
2b=a
a+b=2b+b=3b
3b=2.a/b
3=2a
a=1,5
b=3
a+b=4,5