Cho a, b, c, d là các số dương thỏa mãn a < b, c < d, chứng tỏ ac < bd.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có
a<b<c=>3a<a+b+c
d<m<n=>3d<d+m+n
=>3a+3d<a+b+c+d+m+n
=>3a+3a/a+b+c+d+m+n<a+b+c+m+n+d/a+b+c+d+m+n
=>3(a+d)/a+b+c+d+m+n)<1
=>a+d/a+b+c+d+m+n<1/3 (đpcm)
copy
a<b<c<d<m<n =>a+b+c+d+m+n>a+b+a+b+a+b=3(a+b)
\(\Rightarrow\frac{a+b}{a+b+c+d+m+n}<\frac{a+b}{3\left(a+b\right)}=\frac{1}{3}\)
=>đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
do a<b<c<d<m<n
=>a+b<c+d
a+b<m+n
=>a+b+a+b+a+b<a+b+c+d+m+n
=>a+b+a+b+a+b/a+b+c+d+m+n<a+b+c+d+m+n/a+b+c+d+m+n
<=>3(a+b)/a+b+c+m+d+n<1
=>a+b/a+b+c+d+m+b<1/3 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a<b<c<d<m<n thì:
a+b+c > 3a ; d+m+n > 3d => a+b+c+d+m+n > 3a + 3d
Do đó: \(\frac{a+d}{a+b+c+d+m+n}< \frac{a+d}{3a+3d}=\frac{1}{3}.\)đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a)a<b
=>a+c<b+c(1)
c<d
=>b+c<b+d(2)
Từ 1 và 2 =>a+c<b+d
b)a<b
=>ac<bc(1)
c<d
=>bc<bd(2)
Từ 1 và 2 =>ac<bd
Với a > 0, b > 0, c > 0, d > 0 ta có:
a < b ⇒ ac < bc (1)
c < d ⇒ bc < bd (2)
Từ (1) và (2) suy ra: ac < bd.