K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

Chọn D

27 tháng 6 2017

Đáp án đúng : D

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Vẽ đồ thị:

\(3\cos x + 2 = 0\) trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) có 4 nghiệm

15 tháng 7 2018

Đáp án D

Định lí: “Nếu hàm số y = f x  liên tục trên a ; b  và f a . f b < 0  thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho f c = 0 ”.

Mệnh đề 1: SAI ở giả thiết (a;b).

Mệnh đề 2: Nếu hàm số y=f(x) liên tục trên  a ; b

và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho c hay  f x = 0 là nghiệm của phương trình f(x)=0 nên mệnh đề 2 ĐÚNG.

Mệnh đề 3: Nếu hàm số y=f(x) liên tục, đơn điệu trên a ; b và f a . f b < 0  thì đồ thị hàm số y=f(x) cắt trục Ox tại duy nhất một điểm thuộc khoảng (a;b) nên f(x)=0 có nghiệm duy nhất trên (a;b). Do đó mệnh đề 3 ĐÚNG

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Vẽ đồ thị:

\(3\sin x + 2 = 0\) trên đoạn \(\left( { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right)\) có 5 nghiệm

b)     Vẽ đồ thị:

\(\cos x = 0\) trên đoạn \(\left[ { - \frac{{5\pi }}{2};\frac{{5\pi }}{2}} \right]\) có 6 nghiệm 

11 tháng 10 2019

Đáp án D

25 tháng 10 2018

13 tháng 12 2017

Vậy phương trình (*) có 4 nghiệm phân biệt

17 tháng 12 2017

Đáp án B

20 tháng 6 2018

Vậy phương trình (1) có nghiệm trên đoạn [-2;2] khi và chỉ khi phương trình (*) có nghiệm trên đoạn [0;4]

Dựa vào hình vẽ ta nhận thấy trên đoạn [0;4] thì đường thẳng y = 4 3 cắt đồ thị hàm số đã cho đúng tại một điểm. Do đó phương trình (*) có đúng 1 nghiệm hay phương trình (1) có đúng một nghiệm.