K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

+) Ta có: a 3 + b 3 = a + b 3 - 3 a b a + b

Thật vậy, VP = a + b 3  – 3ab (a + b)

= a 3 + 3 a 2 b + 3 a b 2 + b 3 - 3 a 2 b - 3 a b 2

= a 3 + b 3  = VT

Nên  a 3 + b 3 + c 3 = a + b 3 - 3 a b a + b + c 3  (1)

Ta có: a + b + c = 0 ⇒ a + b = - c (2)

Thay (2) vào (1) ta có:

a 3 + b 3 + c 3 = - c 3 - 3 a b - c + c 3 = - c 3 + 3 a b c + c 3 = 3 a b c

Vế trái bằng vế phải nên đẳng thức được chứng minh.

25 tháng 6 2017

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)

25 tháng 6 2017

hey you, còn câu b,c?

22 tháng 8 2018

c, Ta có : a+b+c=0 ⇒ c=-(a+b)

⇒ a3+b3+c3= a3+b3-(a+b)3= x3+y3-(x3+3x2y+3xy2+y3)= x3+y3-x3-3x2y-3xy2-y3= -3x2y-3xy2= -3xy(x+y)= 3xyz(đpcm)

22 tháng 8 2018

Câu a : Ta có :

\(x^3+x^2z+y^2z-xyz+y^3=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+z\right)=0\)

\(\Leftrightarrow x+y+z=0\)

Câu b : Khai triển VT ta có :

\(VT=\left(a+b+c\right)^3-a^3-b^3-c^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

Câu c : Ta có :

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Luôn đúng vì \(a+b+c=0\)

NV
20 tháng 6 2020

\(\frac{a^3+b^3+c^3-3abc}{a+b+c}=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{a+b+c}=\frac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a+b+c}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a+b+c}=a^2+b^2+c^2-ab-bc-ca\)

\(=\frac{1}{2}\left(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\right)\)

\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (đpcm)

15 tháng 1 2021

a3 + b3 + c3 = 3abc

⇒ a3 + b3 + c3 - 3abc = 0

⇒ ( a3 + b3 ) + c3 - 3abc = 0

⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0

⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

⇒ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)

+) a2 + b2 + c2 - ab - bc - ac = 0

⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0

⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0

⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0

VT ≥ 0 ∀ a,b,c . Dấu "=" xảy ra khi a = b = c

⇒ a + b + c = 0 hoặc a = b = c ( đpcm )

21 tháng 9 2017

Lê Minh Tuấn bn tham khảo nha:

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

21 tháng 9 2017

cảm ơn OoO Ledegill2 OoO

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:

Áp dụng BĐT Cô-si: 

$a+b+c\geq 3\sqrt[3]{abc}=3(1)$
Tiếp tục áp dụng BĐT Cô-si:

$a^3+a\geq 2a^2$

$b^3+b\geq 2b^2$

$c^3+c\geq 2c^2$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)$

Lại có:

$a^2+1\geq 2a$

$b^2+1\geq 2b$

$c^2+1\geq 2c$

$\Rightarrow a^2+b^2+c^2\geq 2(a+b+c)-3=(a+b+c)+(a+b+c)-3$

$\geq a+b+c+3-3=a+b+c(2)$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)\geq a^2+b^2+c^2(3)$

Từ $(1); (2); (3)$ ta có đpcm.