K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

Hàm số không có cực trị khi đạo hàm của nó không đổi dấu trên tập xác định R\{m}.

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét g(x) = x 2  – 2mx – 2 m 2  + 3

∆ ’g =  m 2  + 2 m 2  – 3 = 3( m 2  – 1) ;

∆ ’g  ≤ 0 khi – 1  ≤  m  ≤  1.

Khi – 1  ≤  m  ≤  1 thì phương trình g(x) = 0 vô nghiệm hay y’ = 0 vô nghiệm và y’ > 0 trên

tập xác định. Khi đó, hàm số không có cực trị.

Khi m = 1 hoặc m = -1, hàm số đã cho trở thành y = x + 3 (với x  ≠  1) hoặc y = x – 3 (với x  ≠  - 1) Các hàm số này không có cực trị.

Vậy hàm số đã cho không có cực trị khi – 1  ≤  m  ≤  1.

28 tháng 11 2017

Giải bài 6 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Ta có bảng biến thiên:

Giải bài 6 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Dựa vào BBT thấy hàm số đạt cực đại tại x = -m – 1.

Hàm số đạt cực đại tại x = 2 ⇔ -m – 1 = 2 ⇔ m = -3.

Vậy m = -3.

 

8 tháng 2 2019

Đáp án: A.

- Nếu m = 0 thì y = -2x - 2, hàm số không có cực trị.

- Nếu m ≠ 0: Hàm số không có cực trị khi và chỉ khi phương trình y' = m x 2  + 2mx + 2(m - 1) = 0 không có hai nghiệm phân biệt. Muốn vậy, phải có

Δ' = m 2  - 2m(m - 1) = - m 2  + 2m ≤ 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

13 tháng 7 2019

Đáp án: A.

- Nếu m = 0 thì y = -2x - 2, hàm số không có cực trị.

- Nếu m ≠ 0: Hàm số không có cực trị khi và chỉ khi phương trình y' = m x 2  + 2mx + 2(m - 1) = 0 không có hai nghiệm phân biệt. Muốn vậy, phải có

∆ ' =  m 2  - 2m(m - 1) = - m 2  + 2m ≤ 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

8 tháng 10 2019

TXĐ: D = R

y’ = 3 x 2  + 4mx + m

Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.

⇔ 3 x 2  + 4mx + m có hai nghiệm phân biệt.

⇔ Δ’ = 4 m 2  -3m > 0 ⇔ m(4m – 3) > 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đã cho có cực đại, cực tiểu khi m < 0 hoặc m > 3/4.

29 tháng 8 2019

TXĐ: D = R

y’ = 3 x 2  + 4mx + m

Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.

⇔ 3 x 2  + 4mx + m có hai nghiệm phân biệt.

⇔ ∆ ’ = 4 m 2  -3m > 0 ⇔ m(4m – 3) > 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đã cho có cực đại, cực tiểu khi m < 0 hoặc m > 3/4.

2 tháng 5 2019

28 tháng 9 2018

Đáp án: C.

Tập xác định: D = R. y' = 3 x 2  - 6x + m.

Hàm số có cực trị khi và chỉ khi y' đổi dấu trên R

⇔ 3 x 2  - 6x + m = 0 có hai nghiệm phân biệt

⇔ ∆ ' = 9 - 3m > 0 ⇔ 3m < 9 ⇔ m < 3

1 tháng 11 2019

Đáp án: C.

Tập xác định: D = R. y' = 3 x 2  - 6x + m.

Hàm số có cực trị khi và chỉ khi y' đổi dấu trên R

⇔ 3 x 2  - 6x + m = 0 có hai nghiệm phân biệt

Δ' = 9 - 3m > 0 3m < 9 m < 3