Xét các số thực dương x, y thỏa mãn ln 1 - 2 x x + y = 3 x + y - 1 . Tính giá trị nhỏ nhất P m i n của biểu thức P = 1 x + 1 x y
A. P m i n = 8
B. P m i n = 16
C. P m i n = 4
D. P m i n = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có ln x y = ln x + ln y ≥ ln x 2 + y
⇔ x y ≥ x 2 + y ⇔ y x - 1 ≥ x 2
Vì x = 1 không thỏa và y > 0 => x > 1
⇒ P = x y ≥ x 2 x - 1 + x = f x
X é t h à m s ố f x = x 2 x - 1 + x v ớ i x > 1
⇒ f ' x = x 2 - 2 x x - 1 2 + x = 2 x 2 - 4 x + 1 x - 1 2
⇒ f ' x = 0 ⇔ x = 2 + 2 2 v ì x > 1
Dựa vào bảng biến thiên của hàm số f(x) suy ra
⇒ M i n P = M i n x > 1 f x = f 1 = 3 + 2 2 .
Đáp án A
ln ( 1 − 2 x x + y ) = 3 x + y − 1 , ( 0 < x < 1 2 , y > 0 ) ⇔ ln ( 1 − 2 x ) + 1 − 2 x = ln ( x + y ) + x + y f ( t ) = t + ln t ⇒ f ' ( t ) = 1 + 1 t > 0 ⇒ f ( 1 − 2 x ) = f ( x + y ) ⇔ 1 − 2 x = x + y ⇔ y = 1 − 3 x
Đáp án B.
Từ giả thiết, suy ra
Xét hàm số f ( t ) = 5 t - 1 3 t + t trên ℝ .
Đạo hàm f ' ( t ) = 5 t . ln 5 - ln 3 3 t + 1 > 0 , ∀ t ∈ ℝ ⇒ hàm số f ( t ) luôn đồng biến trên ℝ .
Suy ra
Do y > 0 nên x + 1 x - 2 > 0 ⇔ [ x > 2 x < - 1 . Mà x > 0 nên x > 2 .
Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2 trên 2 ; + ∞ .
Đạo hàm
Lập bảng biến thiên của hàm số trên 2 ; + ∞ , ta thấy min g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .
Vậy T m i n = 3 + 2 3 khi x = 2 + 3 và x = 1 + 3 .
Đáp án A
ln 1 - 2 x x + y = 3 x + y - 1 , 0 < x < 1 2 , y > 0 ⇔ ln 1 - 2 x + 1 - 2 x = ln ( x + y ) + x + y f t = t + ln t ⇒ f ' t = 1 + 1 t > 0 ⇒ f 1 - 2 x = f ( x + y ) ⇔ 1 - 2 x = x + y ⇔ y = 1 - 3 x P = 1 x + 1 x y = 1 x + 1 x 1 - 3 x ⇒ P ' = - 1 x 2 + 6 x - 1 2 x 1 - 3 x x ( 1 - 3 x ) = - 2 x 1 - 3 x ( 1 - 3 x ) + ( 6 x - 1 ) x 2 x 1 - 3 x x 2 ( 1 - 3 x ) P ' = 0 ⇔ 2 x 1 - 3 x ( 1 - 3 x ) = 6 x 2 - x ⇔ 6 x 2 - x > 0 4 x ( 1 - 3 x ) 3 = 6 x 2 - x 2 ⇔ [ x < 0 x > 1 6 4 x - 36 x 2 + 108 x 3 - 108 x 4 = 26 x 4 - 12 x 3 + x 2 ⇔ x = y = 1 4 ⇒ P = 8