Tọa độ định của parabol y = ( - x 2 / 2 ) + 6 x + 1 là
A. I(6; 19) B. I(6; 17)
C. I(-6; -43) D. I(-6; 41)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: (P): \(y=x^2+5x-6\)
Tọa độ đỉnh của (P) là:
\(\left\{{}\begin{matrix}x=\dfrac{-b}{2a}=-\dfrac{5}{2}\\y=-\dfrac{\text{Δ}}{4a}=-\dfrac{5^2-4\cdot1\cdot\left(-6\right)}{4\cdot1}=-\dfrac{25+24}{4}=-\dfrac{49}{4}\end{matrix}\right.\)
=>Trục đối xứng của (P) là \(x=-\dfrac{5}{2}\)
Tọa độ giao điểm của (P) với trục Ox sẽ là nghiệm của hệ phương trình sau đây:
\(\left\{{}\begin{matrix}x^2+5x-6=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+6\right)\left(x-1\right)=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-6;1\right\}\\y=0\end{matrix}\right.\)
Vậy: Tọa độ các giao điểm của (P) với trục Ox là A(-6;0) và B(1;0)
Lời giải:
$y=3x^2-12+12$
Tọa độ đỉnh $P$: \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{12}{2.3}, \frac{4.3.12-12^2}{4.3})=(2,0)\)
pthdgd
2x^2-x-1=0
(x-1)(2x+1)=0
x=1=>y=2: x=-1/2=> y=1/2
td gd
A(1;2);B(-1/2;1/2)
b.
C(m,2m^2);∆: x-y+1=0
S∆sbc max =>sAd(c,∆) max
|m-(2m^2)+1|/√(1+1) max
dk m€(-1/2;1)
F(m)=-2m^2+m+1=
(2m+1)(1-m)>0
|f(x)|=-2m^2+m+1=-2(m-1/4)^2+9/8
khi m=1/4
C(1/4;1/8)
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-n=0\)
THeo đề, ta có:
\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2+x-2=0\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(x-1\right)=0\\y=-x+2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-2;4\right);\left(1;1\right)\right\}\)
Bài 3:
Đặt \(a=m^2-4\)
\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến
\(\Leftrightarrow a< 0\)
\(\Leftrightarrow m^2-4< 0\)
\(\Leftrightarrow m^2< 4\)
\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)
\(\Leftrightarrow-2< m< 2\)
Vậy với \(-2< m< 2\)thì hàm số nghịch biến
\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)
\(\Leftrightarrow a>0\)
\(\Leftrightarrow m^2-4>0\)
\(\Leftrightarrow m^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)
Đáp án: A (hoành độ đỉnh là x = (-b)/2a = 6; tung độ đỉnh là y = (-Δ)/4a = 19).