Cho phương trình: 6 . a 2 x - 13 a b x + 6 . b 2 x = 0 a > 0 ; b > 0 ; a ≠ b . Tìm số nghiệm của phương trình đã cho
A. 0
B. 2
C. 3
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chị ơi phần a giải 2 theo 2TH. TH1 là 3 đều lớn hơn 0 và TH2 là 2 âm 1 dương
Phần b giải 3 TH: TH1 cả 3 nhỏ hơn 0
TH2 :2 dương 1 âm
TH3 : 1 âm 2 dương
2
\(pt\Leftrightarrow x^2\left(1-y^2\right)+y.x+y^2=0\text{ (1)}\)
+Xét trường hợp \(1-y^2=0\Leftrightarrow y=\pm1\)
\(y=1\text{ thì }pt\rightarrow x+1=0\Leftrightarrow x=-1\)
\(y=-1\text{ thì }pt\rightarrow-x+1=0\Leftrightarrow x=1\)
+Xét \(y=0\)\(pt\rightarrow x=0\)
+Xét \(y\ne0;-1;1\Rightarrow\left|y\right|\ge2\Rightarrow y^2-1\ge3\)
\(pt\Leftrightarrow x^2\left(1-y^2\right)+y.x+y^2=0\text{ (1)}\)
\(\Delta\text{ (}x\text{) }=y^2-4\left(1-y^2\right)y^2=y^2\left(4y^2-3\right)\)
Để phương trình (1) có nghiệm x là một số nguyên thì \(\Delta\)phải là bình phương của một số hữu tỉ.
Khi đó, (1) có nghiệm \(x=\frac{-y\pm\sqrt{y^2\left(4y^2-3\right)}}{1-y^2}=\frac{-y\pm y\sqrt{4y^2-3}}{1-y^2}\)
Ta thấy ngay: \(\hept{\begin{cases}-y\in Z\\1-y^2\in Z\\1-y^2\le-3\end{cases}}\)nên nếu \(\sqrt{4y^2-3}\notin Z\) thì \(x\notin Z\)
Vậy ta cần \(\sqrt{4y^2-3}\in Z\Leftrightarrow4y^2-3=k^2\text{ }\left(k\in Z\text{+}\right)\)
\(\Leftrightarrow\left(2y+k\right)\left(2y-k\right)=3\)
Do \(k>0\) nên \(2y+k>2y-k\) và hai số trên đều nguyên nên xảy ra các trường hợp
\(\hept{\begin{cases}2y+k=3\\2y-k=1\end{cases}\text{ hoặc }\hept{\begin{cases}2y-k=-3\\2y+k=-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1\\k=1\end{cases}}\text{ hoặc }\hept{\begin{cases}y=-1\\k=1\end{cases}}\)
Loại hết vì đang xét \(\left|y\right|\ge2\)
Vậy các nghiệm nguyên của hệ là \(\left(x;y\right)=\left(0;0\right);\text{ }\left(-1;1\right);\text{ }\left(1;-1\right)\)
\(1.\) Cho \(a+b+c=1\) với \(a,b,c>0\)
Chứng minh rằng: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\left(1\right)\)
\(--------\)
\(\left(1\right)\) \(\Leftrightarrow\) \(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\le\sqrt{6}\left(2\right)\)
Ta cần chứng minh bđt \(\left(2\right)\) luôn đúng với mọi số thực \(a,b,c>0\)
Thật vậy, áp dụng bđt Cauchy cho hai số dương, ta được:
\(\hept{\begin{cases}\sqrt{\frac{2}{3}\left(1-a\right)}\le\frac{1-a+\frac{2}{3}}{2}=\frac{5-3a}{6}\\\sqrt{\frac{2}{3}\left(1-b\right)}\le\frac{5-3b}{6}\\\sqrt{\frac{2}{3}\left(1-c\right)}\le\frac{5-3c}{6}\end{cases}}\)
Do đó, \(\sqrt{\frac{2}{3}}\left(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\right)\le\frac{15-3\left(a+b+c\right)}{6}=\frac{15-3.1}{6}=2\)
hay nói cách khác, \(\sqrt{\frac{2}{3}}VT\left(2\right)\le2\)
\(\Rightarrow\) \(VT\left(2\right)\le\sqrt{\frac{3}{2}}.2=\sqrt{6}=VP\left(2\right)\)
Vậy, bđt \(\left(2\right)\) được chứng minh nên kéo theo bđt \(\left(1\right)\) luôn đúng với mọi \(a,b,c>0\)
Đẳng thức trên xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
a, pt <=> (x^4-4x+4)+(x^2+6x+9) = 0
<=> (x^2-2)^2+(x+3)^2=0
<=> x^2-2=0 và x+3=0
=> pt vô nghiệm
b, pt <=> (x-1).(x^6+x^5+x^4+x^3+x^2+x+1) = 0
<=> x^7+x^6+x^5+x^4+x^3+x^2+x-x^6-x^5-x^4-x^3-x^2-x-1 = 0
<=> x^7-1=0
<=> x^7=1 = 1^7
=> x=1
Tk mk nha
Ta có: \({x^2} + x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 2\end{array} \right.\)
\( \Rightarrow A = \{ 1; - 2\} \)
Ta có: \(2{x^2} + x - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{3}{2}\\x = - 2\end{array} \right.\)
\( \Rightarrow B = \left\{ {\frac{3}{2}; - 2} \right\}\)
Vậy \(C = A \cap B = \{ - 2\} \).
a: Khi m=0 thì (1) sẽ là x^2-5x+6=0
=>x=2 hoặc x=3
b: 2x1+3x2=13 và x1+x2=m+5
=>2x1+2x2=2m+10 và 2x1+3x2=13
=>x2=13-2m-10=3-2m và x1=m+5-3+2m=3m+2
x1x2=-m+6
=>(-2m+3)(3m+2)=-m+6
=>-6m^2-4m+9m+6=-m+6
=>-6m^2+6m=0
=>m=0 hoặc m=1
Chọn B