K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2021

1. taller 

2.better 

3.more expensive

4.faster

5.heavier

6.thinner

7.slower

8.more clever

9.older

10.cheaper

11.taller

12.easier

13.nicer

14.better than

15.longer

CHÚC BẠN HỌC TỐT

27 tháng 6 2016

khổ quá không biết làm

27 tháng 6 2016

140<7*x<161

20*7<7*x<23*7

ta loại bỏ 7 còn 20<x<23

x=21,22

9 tháng 8 2016

Sủ dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};\text{ }ab\le\frac{\left(a+b\right)^2}{4}\)

\(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{1}{4}\)

\(P=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4.\frac{1}{4}}\)

\(=\frac{4}{\left(x+y\right)^2}+2+5\)

\(\ge4+2+5=11\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 8 2016

\(-------\)

Chứng minh bổ đề:  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  \(\left(i\right)\) (với  \(a,b>0\)  )

Bđt  \(\left(i\right)\)  tương đương với bđt sau:

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)  \(\left(ii\right)\)

Ta cần chứng minh bđt  \(\left(ii\right)\)  luôn đúng với mọi \(a,b>0\)

Thật vậy,  ta áp dụng bđt  \(Cauchy\)  loại hai cho từng bộ số gồm hai số không âm đề giải quyết bài toán trơn tru như sau:

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\) \(\left(1\right)\)

\(a+b\ge2\sqrt{ab}\)  \(\left(2\right)\)

Nhân từng vế  \(\left(1\right)\)  và  \(\left(2\right)\) , ta suy ra điều phải chứng minh.

Vì bđt  \(\left(ii\right)\)  được chứng minh nên kéo theo bđt  \(\left(i\right)\)  luôn đúng với mọi  \(a,b>0\)

Đẳng thức xảy ra khi và chỉ khi  \(a=b\)

\(-------\)

Quay trở về bài toán, ta có:

\(1\ge x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)  \(\sqrt{xy}\le\frac{x+y}{2}\le\frac{1}{2}\)

nên suy ra được  \(xy\le\frac{1}{4}\)

\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

Áp dụng bđt  \(\left(i\right)\) cho biểu thức đầu tiên, bđt Cauchy cho biểu thức thứ hai và với chú ý rằng  \(xy\le\frac{1}{4}\) , ta được:

\(P\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{1}{4}}=4+2+5=11\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(x=y=\frac{1}{2}\)  (bạn cần làm rõ khúc này nha)

Vậy,  \(P_{min}=11\)  \(\Leftrightarrow\)  \(x=y=\frac{1}{2}\)

26 tháng 11 2021

1. Do...don't
2. Does....does
3.like
4.Do....do
5.Do...They

26 tháng 11 2021

frog

brush

frisbee

read

queen

crown

8 tháng 4 2022

undefinedundefined

31 tháng 3 2022

dài quá ờ...

31 tháng 3 2022

Giúp mik đi